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Abstract

In this paper we present a decomposition of aggregate labour productivity growth

(ALP) into three main components: sectoral total factor productivity (TFP), sectoral

capital deepening and structural change (reallocation of labour across sectors). In order

to disentangle the relative contribution of these factors, we adopt an econometric approach

to estimate production functions for 28 sectors in the major European countries, Japan,

Australia and the US (data are obtained from the EU-KLEMS project; period 1977-

2007; 13 countries). Estimates of the production frontiers are obtained using a model

which allows flexible identification of country specific time trends (temporal variation

in individual heterogeneity) and time variation in the vector of slope coefficients of the

production frontiers (bias in technical change). We find that the main driver of aggregate

labour productivity growth is the sectoral factor deepening effect. TFP growth is very

stable across years and across countries and it ranges between 0.2-0.5% per year, thus

accounting for less than 30% of the growth in ALP in most countries. The structural

change component has a slightly negative effect on ALP, pointing to the fact that the

displacement of labour has been unfavorable to aggregate labour productivity.
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1 Introduction

In this paper we consider the relative contribution of three main factors to aggregate labour

productivity growth: sectoral total factor productivity (TFP), sectoral capital deepening and

structural change (reallocation of labour across sectors). In order to disentangle the relative

contribution of these factors, we adopt an econometric approach to estimate production frontiers

for 28 sectors in the major European countries, Japan, Australia and the US (data are obtained

from the EU-KLEMS project; period 1977-2007; 13 countries). Estimates of the production

frontiers are obtained using a flexible translog specification which allows the identification of

country specific time trends (temporal variation in individual heterogeneity) and time variation

in the vector of slope coefficients of the production frontiers (bias in technical change). The

framework can be thought as an extension of the fixed effects model and is especially useful

when dealing with EU-KLEMS data because of their “long” panel nature (i.e., small number

of countries for a relative long time span). The specification can be written as a standard

state-space formulation and estimated using Kalman filtering and smoothing algorithms.

The decomposition of labour productivity growth is obtained as follow. First, we apply

the econometric model to the 28 sectors in order to obtain estimates of the coefficients of the

production frontiers. Second, we use this estimates to produce a decomposition of sectoral

labour productivity growth into capital deepening and TFP. Third, we disentangle the effect of

the increase of labour productivity at sectoral level (arising from capital deepening and TFP)

from the effect of the displacement of labour across sectors. In fact, if the labour share of

high productivity sectors increase with respect to low productivity sectors, aggregate labour

productivity will improve because of this mobility (even if labour productivity growth at sectoral

level is kept constant). This effect is what we call structural change. Fourth, we consider

an enhanced decomposition of aggregate labour productivity in which the aggregate effect of

sectoral capital deepening and sectoral TFP growth are separated. Our final decomposition of

aggregate labour productivity growth will entail therefore three components: the contribution

of sectoral TFP growth, the effect of sectoral capital deepening, and the effect of structural

change (labour mobility across sectors).

Our results suggest that the main driver of aggregate labour productivity growth is the

sectoral factor deepening effect. TFP growth is very stable across years and across countries and
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it ranges between 0.2-0.5% per year. The structural change component has a slightly negative

effect on aggregate labour productivity growth, pointing to the fact that the displacement of

labour has been unfavorable to aggregate labour productivity.

The paper is organized as follow. In section 2 we present the basic production model

and its state-space representation. In section 3, the econometric estimation strategy is pre-

sented. Section 4 introduces the decomposition of aggregate labour productivity growth into

the aforementioned components. Section 5 describes the data used and the main empirical

result. Finally, section 6 concludes.

2 The production model

The sectoral production technology is represented via a constant returns to scale (CRS) pro-

duction function where a single output yjit (log of output) is produced by means of multiple

inputs Xj
it where i = 1, . . . , N indexes the number of countries, t = 1, ..., T indexes the number

of time periods and j = 1, ..., J indexes the number of sectors. A translog specification can be

accommodated by including the log of inputs, the squared log of inputs and interaction terms

into the vector Xj
it:

yjit = �jit +Xj
it�

j
t + ✏jit (1)

Since we assume CRS the production function can be expressed in intensive form and all

the variables can be normalized by the quantity of labour. Therefore equation (1) contains on

the left-hand side the log of labour productivity (output per worker) and on the right-hand side

the log of inputs over labour (for example, capital per worker). The intensive form production

function defined in (1) is time varying due to the time varying coefficients
�
�jit, �

j
t

�
. If one is

willing to assume no productivity change then the production frontier becomes time invariant

yjit = �ji + Xj
it�

j
+ ✏jit. In this last equation the technology is fixed (no technical change as

the parameters are time invariant) and the country specific intercept is a standard fixed effect

unobserved heterogeneity component. It is possible to estimate such a model using standard

panel data estimators (for a detailed discussion of this point see Schmidt and Sickles, 1984).

Of course, the validity of such a procedure is predicated on the assumption that the production

function parameters are time invariant and this is a tolerable assumption for “short” panels.
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On the other hand, when T becomes larger the time invariant model becomes less appealing.

In this instance the state-space representation provides the best option to elegantly estimate

the time-varying model. In order to do so, we need to introduce some further assumption on

the law of motion of the parameters of the model. We assume that both the country specific

intercepts and the slope of the production function follow a random walk:

8
>><

>>:

�jt = �jt�1 +  j
t

�j
t = �j

t�1 + ⌫jt

(2)

where �jt =

�
�j1t, . . . , �

j
Nt

�0

,  t s N
�
0, Ht = �2

j⌘IN
�

and ⌫t s N (0, Qt) are independently

distributed random errors (Qt is defined in the next section with more detail). In order to

estimate the model via the Kalman filter we need to write it in the standard form. This can

be easily done by defining the following matrices and vectors: ↵j
t =

0

B@
ajt

�j
t

1

CA, Zj
t =

⇥
IN , X

j
it

⇤
,

D =

2

64
IN

IK

3

75, ⌘jt =

0

B@
 j
t

⌫jt

1

CA. Equations (1) and (2) can now be represented using the

following more compact notation:

yjt = Zj
t↵

j
t + ✏jt (3)

↵j
t = D↵j

t�1 + ⌘jt (4)

where D will be omitted from here on as it is IN+K . This is a standard state-space model

and the ↵j
t can be that can be estimated via the Kalman filter and smoothing algorithms given

estimates of the variance-covariances Qt and Ht. The first equation is called the measurement

equation, while the second equation is called the transition equation. In the next section we

present details on the estimation of the model in a Bayesian framework.
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3 The Econometric Estimation

We estimate the state-space form derived in the previous section in a Bayesian framework (this

differs from the classical estimation strategy followed by Peyrache and Rambaldi (2012) in the

fact that it allows more flexibility in the specification of the covariance matrices). We initialize

the state vector using a diffuse prior ↵0 ⇠ N(a0,P0) and define the transition equation covariance

matrix Qt as a partitioned diagonal matrix where the partition divides the state vector into two

components. The first component contains N stochastic trends (�t) and the second component

contains K time-varying slopes (�t). The specification is such that contemporaneous correlation

is allowed within each component, although no correlation is allowed across the two components.

Therefore the specification is of the form Qt = diag(⌦�,t,⌦�,t). We do not directly specify these

diagonal sub-matrices, but use what is known as a dynamic discounting approach originating

from the engineering and statistical literature. A detail treatment of this approach can be

found in West and Harrison (1999), Ch.6. The limiting behaviour of the mean square error

of the filter when using discounting has been studied by Triantafyllopoulos (2007). Here we

only make a brief presentation as it is needed to establish notation and present the Bayesian

estimation algorithm.

The conditional distribution of the state (posterior in a Bayesian context) at period t � 1

is given by ↵t�1 ⇠ N(at�1|t�1,Pt�1|t�1), where at�1|t�1 is a filter estimate (given Ht and Qt).

The Kalman filter prediction equations provide the priors of the state in a Bayesian context.

At period t, the prior distribution is ↵t|t�1 ⇠ N(at|t�1,Pt|t�1), where, given the form of the

econometric model in this study, are given by

at|t�1 = at�1|t�1

Pt|t�1 = Pt�1|t�1 +Qt

(5)

A prediction of yt can be made at time t given all known information at t�1. We can write

a distribution for the prediction yt|t�1 ⇠ N(ŷt|t�1,Ft|t�1), where,

ŷt|t�1 = Ztat|t�1

Ft|t�1 = ZtPt|t�1Z
0
t +Ht

(6)
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Once information for time t is available the updating of the state can occur. This forms a

posterior in a Bayesian context, ↵t ⇠ N(at|t, Pt|t), where,

at|t = at|t�1 +Kt⌫t

⌫t = yt � Ztat|t�1

Kt = Pt|t�1Z
0
tF

�1

t|t�1

Pt|t = Pt|t�1 �KtFtK 0
t

(7)

In (5), the precision of ↵t|t�1is associated with P�1
t|t�1, and that of ↵t�1|t�1 is P�1

t�1|t�1. How-

ever, P�1
t�1|t�1 is the precision of ↵t|t�1 if there is no stochastic change in the state vector from

period t � 1 to period t (Qt = 0). In fact this is the global model (converging state). How-

ever, locally the dynamics are better captured by Qt 6= 0. The discount literature specifies the

precision P�1
t|t�1 as a discounted Pt�1|t�1 by a proportion.

Pt|t�1 = �

�1/2Pt�1|t�1�
�1/2 (8)

where � = diag(��IN , ��IK) , 0 < ��  1 and 0 < ��  1 are the discount factors associated

with the country specific trends (�t) and slope parameters (�t) in the model.

Using (8) and the second equation in (5), it is easy to see that Qt = (Pt�1|t�1��

�1/2Pt�1|t�1�
�1/2

),

which is a partitioned diagonal matrix as required, and Qt = 0 if the discount factors are equal

to 1.

The estimation of the country specific trends, �t, and slope parameters �t is achieved by

using the forward filter (equations (7) which provides estimates �t|t and �t|t at each t). Subse-

quently, these estimates are revised to be made conditional on the complete sample by running

a smoothing algorithm to compute �t|T and �t|T (the equations of the classical smoother are

presented in the Appendix) and their mean square error Pt|T . However, in order to obtain

estimates using these two algorithms (forward filter and backward filter), we require values of

additional parameters, which in this case are ✓ = [�2
✏ , ��, ��]. When ✓ is known, the Kalman

filter and appropriate smoothing provide the minimum mean square estimator of the state

and corresponding MSE (minimum linear estimator if normality is not assume), which is the

posterior distribution of ↵t in a Bayesian approach. However, these additional parameters are
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seldom known and thus must be estimated. In a Classical setting they are considered fixed pa-

rameters and can be consistently estimated by evaluation of the likelihood (see Harvey (1989),

Ch. 3 or Durbin and Koopman (2012), Ch. 2) and then used to replace the unknown pa-

rameters in the forward and backward filters. In a Bayesian framework, all parameters of the

model are estimated using MCMC algorithms, typically the Gibbs sampler. This is a standard

Bayesian estimation of a state space model, and thus we only briefly describe the algorithm

here, and present some details in the Appendix. One noteworthy point is that in the conven-

tional Bayesian literature the discount factors are not directly estimated, but calibrated as they

are typically in the range of 0.9 - 0.99. Recent work by Koop and Korobillis (2013) proposes

to use a model averaging approach over a range of values of the discount factors (they use the

term forgetting factors in their work). We have not pursued this approach in this version of

the paper. Instead, we use diagnostic tools to inform the calibration of the discount factors.

A conventional diagnostic tool is to use standardised one-step ahead prediction errors. The

one-step ahead prediction errors are ⌫t (see (7), which are standardised by constructing

ut = L0
t⌫t

where Lt is the lower Choleski factor of F�1
t (LtL0

t = F�1
t )

These standardised prediction errors are conditionally independent and follow standard

Normal distributions (ut ⇠ N(0, I))1

From the above discussion it follows that given a set value for �, the Gibbs sampler has

two blocks. The first block is to draw the state from p(↵|y, h✏), where ↵ = [↵0
1, ...,↵

0
T ]

0 and

y = [y
0
1, ..., y

0
T ] . In the second block we draw h✏ = �2

✏ from p(h✏)p(y|h✏). This can be repeated

for alternative values of � if ut are found to deviate from the standard normal.
1The one-step prediction errors analysis not only provides information of goodness of fit, but also addresses

other key issues such as irregularities in the data series (outliers), model inadequacies (observational variance
structure, choice of discount factor), or both (see for example West and Harrison (1999), Durbin and Koopman
(2012)). The first can be examined via raw errors sequence whilst the latter is detected via investigating the
observed deviation in the standardised error sequence.
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4 Aggregate labour productivity decomposition

The purpose of this section is to establish a productivity decomposition at the aggregate level

for each country in each time period. This decomposition exercise can be interpreted as a

post-estimation exercise, given our estimates of the production model presented in section 3.

In order to do so we follow a two-step decomposition procedure: in the first step we decompose

sectoral labour productivity growth into the contribution of total factor productivity (TFP) and

factor deepening (FD); in the second step we define aggregate labour productivity growth for

each country and decompose it by aggregating TFP and FD across sectors. For each country,

in each time period and for each sector labour productivity growth is given by the difference in

the log of output per worker in two time periods; by using equation (1) we obtain:

yjit+1 � yjit = �jit+1 +Xj
it+1�

j
t+1 � �jit �Xj

it�
j
t (9)

This observed change can be imputed to three different effects: i) the shift in the country

specific intercept, ii) the shift in the slope parameters and iii) the growth in the inputs. The

first two effects are what one usually refers to as productivity change, while the last effect is

an input growth effect. To isolate the productivity effect from the input growth effect we use

a Malmquist logic, keeping some of the variables fixed while moving the others in order to

separate the relative contribution of the different effects. TFP can be measured keeping the

level of inputs at the base period level, obtaining the equivalent of the base period Malmquist

productivity index:

TFP1 = �jit+1 � �jit +Xj
it

�
�j
t+1 � �j

t

�
(10)

Keeping the level of inputs at the comparison period value, we obtain the equivalent of the

comparison period Malmquist productivity index:

TFP2 = �jit+1 � �jit +Xj
it+1

�
�j
t+1 � �j

t

�
(11)

and to avoid the arbitrariness of choosing the base, we use the geometric mean of these two
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indexes in order to get an index of productivity growth:

TFP j
it =

1
2 (TFP1 + TFP2) =

= �jit+1 � �jit +
1

2

�
Xj

it +Xj
it+1

� �
�j
t+1 � �j

t

� (12)

The input growth effect or factor accumulation effect (FD) can be computed using the same

logic. The base period index is:

FD1 =
�
Xj

it+1 �Xj
it

�
�j
t (13)

The comparison period index is:

FD2 =
�
Xj

it+1 �Xj
it

�
�j
t+1 (14)

Finally, we use the geometric mean as a measure of the input growth effect:

FDj
it =

1
2 (FD1 + FD2) =

1

2

�
�j
t + �j

t+1

� �
Xj

it+1 �Xj
it

�
(15)

It is easy to verify that the two effects are an exhaustive and mutually exclusive decomposition

of the log change in output per worker:

yjit+1 � yjit = TFP j
it + FDj

it (16)

Therefore TFP has the standard interpretation of being the difference between output

growth and input growth between two time periods. Moreover, since we allow for a time-

varying slopes in the production function, the TFP measure defined in (12) incorporates any

possible bias in technical change that could occur. All these components are country and time

specific.

We now turn our attention to the aggregation of these quantities across sectors in order

to obtain the effect of sectoral TFP growth onto aggregate labour productivity (ALP). Since

we use EU-KLEMS data, output will be proxied by gross output and our input vector consist

basically of 3 quantities: number of hours worked, capital services and intermediate inputs (II).
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The following accounting identity will hold in each sector for each time period:

V Aj
it = GOj

it � IIjit

i.e. value added is equal to the difference between the value of gross output and the value

of intermediate inputs. Aggregating across sectors one obtains:

V Ait = GOit + IIit =
JX

j=1

�
GOj

jt � IIjjt
�

Since we use a volume measure of gross output (Qj
it) and a volume measure of intermediate

inputs (M j
it), the associated price indexes will be: P j

it =

GOj
it

Qj
it

and W j
it =

IIjit
Mj

it

. In each time

period gross output for the economy is equal to

GOit = PitQit =

JX

j=1

P j
itQ

j
it

For the economy at aggregate level, we have aggregate labour equal to Lit =
P

j L
j
it and

aggregate labour productivity:

Yit =
Qit

Lit

=

P
j Q

j
itP

j L
j
it

=

X

j

Qj
it

Lj
it

Lj
it

Lit

=

X

j

sjitY
j
it

The change in aggregate labour productivity is:

Yit+1

Yit

=

P
j s

j
it+1Y

j
it+1P

j s
j
itY

j
it

This can be decomposed as:

ALP =

Yit+1

Yit

=

P
j s

j
it+1Y

j
it+1P

j s
j
itY

j
it+1

P
j s

j
itY

j
it+1P

j s
j
itY

j
it

= SC · SLP

The first terms can be written as:

SC =

X

j

�jit
sjit+1

sjit
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where
P

j �
j
it =

P
j

sjitY
j
it+1P

j s
j
itY

j
it+1

= 1. The second term can be expressed as:

SLP =

X

j

⇡j
it

Y j
it+1

Y j
it

(17)

with
P

j ⇡
j
it =

P
j

sjitY
j
itP

j s
j
itY

j
it

= 1. Since sectoral labour productivity growth is equal to

the product of total factor productivity (TFP) and factor deepening (FD) we may further

decompose the index in equation (17). In fact, TFP can be aggregated using gross output

shares as weights (see Zelenyuk, 2006):

TFPit =

X
✓jitTFP j

it

where ✓jit =
GOj

it
GOit

. The capital deepening component is obtained residually as the ratio of

the previous two indexes. Therefore the overall aggregate decomposition for each country in

each year will be:

ALP = SC · SLP = SC · TFP ·KD (18)

5 Empirics

The EU-KLEMS dataset is an official project that collects input and output data on prices

and quantities for 26 industrialized countries in the time span 1970-2007 (see O’Mahony and

Timmer (2009)). For each industry the database provides value data on gross output, capital

compensation, intermediate inputs (materials and energy) along with fixed base price and

quantity index numbers (1995=100). We used the amount of total hours worked by persons

engaged as a proxy for the quantity of labour (the alternative of using the number of persons

engaged is less satisfactory). Since gross output, intermediate inputs and capital services are

measured in local currencies we used PPPs to adjust for cross-sectional differential in the general

level of prices. PPPs indexes use US as benchmark (US=100, 1995=100), are sector specific

(i.e., each sector has different PPPs) and different for sectoral output, intermediate inputs and

capital services (i.e., there are three sets of PPPs). Due to lack of data (missing values) we

limit our attention to a subset of data, specifically 13 countries and 20 industrial sectors in the

time span 1977-2007. The list of countries and sectors is reported in Table 1.
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[Table 1 here]

We build a balanced panel dataset in the following way. Let j = 1, ...20 be the sector and

i = 1, ...13 the country, then the index of sectoral output for country i at time t Y j
it is:

Y j
it =

GOj
i1995

PPP j
i

Ijit (19)

where GOj
i1995 is the value of gross output in 1995 for sector j in country i ; Ijit is the fixed

base index of sectoral output quantity change between time t and the base period 1995; PPP j
i

is the purchasing power parity of country i in sector j. With a similar procedure quantity index

numbers are built for intermediate output (materials) and capital services. With this procedure

we obtain a “true” balanced panel data set where cross-sectional (cross-country) comparability

is built using PPPs and time comparability is built using fixed base quantity index numbers.

This procedure guarantees that in each time period countries can be compared. The result

is a quantity index number that proxies sectoral output production, a quantity index number

proxying capital services, a quantity index number that proxies the level of materials used

and the number of hours worked for the labour input. All the variables obtained with this

procedure have been normalized by the sample minimum. The usual procedure of normalizing

variables by sample mean is very unfruitful in our modeling setting. In fact, consider that the

sign of the capital bias component depends on: the sign of [�kt+1 � �kt] that is common to all

countries and the sign of (log kit+1 + log kit) that is country specific. Now, if we normalize by

the sample mean for a positive (negative) sign of [�kt+1 � �kt] the countries below the sample

mean will have a negative (positive) capital bias, while the countries above the mean will have

a positive (negative) capital bias. This is unreasonable, since although the magnitude of the

capital bias should be proportional to the quantity of capital used, it should be monotonic for

all the countries, i.e. the same for all the countries. This is guaranteed by a transformation by

the sample minimum.

Our main empirical results are reported in Table 2. We report aggregate labour produc-

tivity growth (ALP) and its decomposition into the three components described in Section 4:

structural change (SC), TFP and factor deepening (FD). We report the average growth rate

for each component in each decade and for the whole period. With the exemption of Japan,

TFP growth is very stable across the different decades for all countries at values between 0.2-
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0.5%. Structural change has been slightly negative for most countries in these decades while

the main contributor to labour productivity growth has been factor deepening. For example,

by looking at US figures it is clear that SC and TFP are stable across decades and the main

driver in the differences in labour productivity growth is a factor deepening effect. This trend

is quite similar in the sample of countries considered in this study. In fact, the main changes in

aggregate labour productivity growth are driven by the factor deepening component. This is

clear by looking, for example, at the trends of Italy: TFP growth is quite stable (below 0.2%),

as it is the structural change component (exeption in the first decade). The dramatic drop

in aggregate labour productivity growth from 2.9% in the second decade to 1.0% in the first

decade is basically entirely explained by the factor deepening component. Japan is the only

exeption to this main trend, with the highest TFP growth of 0.7% on average on the entire

period. It should also be noted that though at a low level, TFP growth is always positive for

all countries in all decades. This point to the fact that even if TFP is not the main component

of labour productivity growth, it is yet very stable at a positive rate.

[Table 2 here ]

The parameter estimates for the 28 sectors as well as residual analysis are available from

the authors and will be included in the next version of the paper.

6 Conclusions

In this paper we propose an econometric method to estimate sectoral level production functions

for a group of 13 OECD countries in the years 1977-2006. We use the sectoral production

functions to decompose sectoral labour productivity growth into a TFP component and a

factor deepening component. We then aggregate these components to obtain a decomposition of

aggregate labour productivity growth for the entire economy into three components: structural

change, aggregate TFP and aggregate factor deepening. The structural change component

represents the effect of labour displacement accross the different sectors of the economy. The

empirical results point to the fact that the factor deepening component accounts for the lion’s

share of aggregate labour productivity growth. Aggregate TFP growth (with the exception of

Japan) ranges between 0.2-0.5% per annum accross the whole period for all countries. Structural
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change has had a slightly negative effect for some of the countries in the sample and does not

represent a major contributor to long run aggregate labour productivity growth.
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Table 2: Decomposition of Aggregate Labour Productivity Growth
1977-1987 1998-2006

ALP SLP SC TFP FD ALP SLP SC TFP FD
AUS 1.4 1.9 -0.5 0.3 1.6 1.5 1.5 0.1 0.2 1.3
AUT 2.8 2.8 0.0 0.6 2.3 2.7 3.3 -0.7 0.3 3.0
BEL 2.4 2.7 -0.3 0.5 2.2 1.6 2.5 -0.8 0.3 2.2
DNK 2.3 2.3 -0.1 0.4 2.0 2.0 2.4 -0.4 0.2 2.2
ESP 2.1 2.3 -0.2 0.4 1.9 1.8 1.7 0.1 0.2 1.6
FIN 3.4 3.1 0.4 0.5 2.5 2.9 3.3 -0.3 0.2 3.1
FRA 3.1 2.9 0.2 0.6 2.2 2.6 3.0 -0.4 0.2 2.8
GER 1.8 1.8 0.0 0.4 1.5 2.3 2.6 -0.3 0.2 2.4
ITA 2.6 1.5 1.1 0.2 1.3 1.0 1.4 -0.4 0.2 1.2
JPN 3.3 3.0 0.3 0.9 2.0 2.0 2.0 0.0 0.5 1.5
NLD 0.5 1.0 -0.5 0.6 0.4 1.7 2.5 -0.7 0.3 2.1
UK 1.1 1.6 -0.6 0.3 1.3 2.2 2.8 -0.6 0.3 2.5
US 0.8 1.1 -0.3 0.4 0.7 2.5 3.1 -0.6 0.4 2.8

1988-1997 1977-2006
ALP SLP SC TFP FD ALP SLP SC TFP FD

AUS 3 3.8 -0.8 0.4 3.4 2 2.4 -0.4 0.3 2.1
AUT 2.4 2.5 0 0.5 2 2.6 2.9 -0.2 0.4 2.4
BEL 2.8 3 -0.2 0.3 2.7 2.3 2.7 -0.4 0.4 2.4
DNK 2.3 2.6 -0.3 0.3 2.3 2.2 2.4 -0.2 0.3 2.1
ESP 1.8 1.3 0.5 0.2 1.1 1.9 1.8 0.1 0.2 1.5
FIN 3.5 3.3 0.2 0.3 3 3.3 3.2 0.1 0.4 2.9
FRA 2.3 2.5 -0.2 0.4 2.1 2.7 2.8 -0.2 0.4 2.4
GER 3.2 3.1 0.1 0.2 2.9 2.4 2.5 -0.1 0.3 2.2
ITA 2.9 2.7 0.2 0.1 2.6 2.2 1.9 0.3 0.2 1.7
JPN 3.1 3 0.1 0.7 2.3 2.8 2.7 0.1 0.7 2
NLD 1.6 2.2 -0.6 0.4 1.8 1.3 1.8 -0.6 0.4 1.4
UK 2.5 3 -0.5 0.3 2.7 1.9 2.5 -0.6 0.3 2.1
US 1.5 2 -0.5 0.4 1.6 1.6 2 -0.5 0.4 1.6

A Appendix

A.1 Backward Filter- Classical Smoother

The posterior distribution is ↵t ⇠ N(at|T , Pt|T ) where,
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at|T = at|t +Bt(at+1|T � at+1|t)

Pt|T = Pt|t � Bt(Pt+1|t � Pt+1|T )B
0
t (20)

Bt = Pt|tP
�1
t+1|t

at+1|T = at+1|t+1

Pt+1|T = Pt+1|t+1 where t = t� 1, . . . , 1

A.2 MCMC algorithm

For many technical derivations it is easier to work with the inverse of the variances, error
precisions, than with the variances and thus the vector ✓, is redefined ✓ = [��, ��, h✏], where

h✏ =

1

�2
✏

. Following the conventional Bayesian approach, priors for the state vector, ↵t, and

additional other parameters, here h✏, need to be defined. The priors will be then updated via
the likelihood function to obtain the conditional posterior densities. The distribution of the
original state,↵0, follows the literature and it is given by a diffuse prior N(0, P0) where P0 is
sufficiently large. The prior for h✏ is Gamma G(s, �). It is noted that ��, �� are fixed throughout
the running of the MCMC algorithm.

To summarise the priors used in this study are:

p(↵0, h✏) = p(↵0)p(h✏)

p(h✏) = fG(
s✏0
2 ,

�✏
0
2 )

p(↵0) = fN(0,) where  is sufficiently large.
The likelihood for the state space model is:

p(y1, . . . , yT |h✏) = p(y|h✏) = p(y1)
TY

t=2

p(yt|Yt�1)

where Yt�1 = (y01, . . . , y
0
t�1)

0

log p(y1, . . . , yT |h✏) = �
PT

t=1 N

2 ln2⇡-12
PT

t=1 ln|Ft|� 1
2

PT
t=1(yt � Ztat|t�1)

0F�1
t (yt � Ztat|t�1)

The joint posterior is :

p(↵, h✏|y) = p(↵0, h✏)p(y1)
TY

t=2

p(yt|Yt�1) (21)

where ↵ = [↵0
1, ...,↵

0
T ]

0; y = [y
0
1, ..., y

0
T ]

h✏ can be easily to sample from (21), but it is not the case for ↵. An alternative way to
sample ↵t is to use MCMC algorithm; and the following joint density function is adopted.

p(↵, h✏|y) = p(↵)p(h✏)p(y|↵, h✏) (22)

where
p(y|↵, h✏) =

QT
t=1(2⇡h

�N
✏ )

�1/2exp
�
�1

2h✏(yt � Zt↵t)
0
(yt � Zt↵t)

�

p(↵) = p(↵0)
Qn

t=1 p(↵t|↵t�1)

The full expression is p(↵|�) = p(↵0)
QT

t=1 p(↵t|↵t�1,�). We suppress � here for � is fixed
throughout MCMC algorithm
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• Block 1: Draw ↵ from p(↵|y, h✏)

Many methods have been proposed in the literature to draw the state vector such as Carter
and Kohn (1994), Fruhwirth-Schnatter (1994), DeJong and Shephard (1995) and Durbin
and Koopman (2002). The Durbin and Koopman (2002) method with some modifications
will be applied here.

– Step 1: Sample ⌘+t from N(0, Qt), ↵
+
0 from N(↵0, P0), ✏

+
t from N(0, Ht). Then use

equation (3) and (4) to generate the y+,↵+.

– Step 2: Use the Kalman Filter (7) and Smoother (20) equations to compute the
smoothed vector ↵̂ = E(↵| y), and ↵̂+

= E(↵+| y+) (where ↵̂ is the smoothed esti-
mate given the actual observation y⇤ whereas ↵̂+ is the smoothed estimate given the
sampled observation y+).

– Step 3: Following Durbin and Koopman (2002), ↵̃ = ↵̂ � ↵̂+
+ ↵+ is considered as

the draw ↵ from p(↵|y, h✏)

• Block 2: Draw h✏ from p(h✏)p(y|h✏) which is the Gamma distribution G(

s✏t
2 ,

�✏
t
2 )where

s✏t = 1 + s✏t�1

�✏t = �✏t�1 +
�✏t�1

s✏t�1

⇥
(yt � Ztat|t�1)

0F�1
t (yt � Ztat|t�1)

⇤

B The Estimated Model

The empirical model estimated in this paper is a translog function where the parameters
of the square and cross-product terms are kept as time invariant. Thus, we can re-write the
model (3) as

yt = Zt↵t +Mt� + ✏t ✏t ⇠ N(0, Ht) (23)
↵t = ↵t�1 + ⌘t ⌘t ⇠ N(0, Qt) (24)

where
yt is N ⇥ 1; t = 1, ..., T
Z†

t =
⇥
IN Xt

⇤
; Xt is N ⇥K1

↵t =


�t
�†
t

�
is the m⇥ 1 state vector; ↵0 ⇠ N(a0,P0); where m = N +K1

Mt is N ⇥K2, and K1 +K2 = K
� are the parameters attached to the regressors in Mt

�0 ⇠ N(b0, P0)

✏t ⇠ N(0, Ht); Ht = �2
✏ IN
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⌘t ⇠ N(0, Qt)

To estimate this model we used a slightly modified algorithm that estimates � as a separate
block in the Gibbs sampler.

B.1 The filter

Forward Filter

Posterior at period t-1

↵t�1 ⇠ N(at�1|t�1,Pt�1|t�1)

Prior at period t

↵t|t�1 ⇠ N(at|t�1,Pt|t�1)

at|t�1 = at�1|t�1

Pt|t�1 = Pt�1|t�1 +Qt

(25)

Forecast at t

y⇤t|t�1 ⇠ N(ŷt|t�1,Ft|t�1)

ŷt|t�1 = Z⇤
t at|t�1 +Mtb

Ft|t�1 = Z⇤
t Pt|t�1Z⇤0

t +Ht

(26)

Posterior at t

↵t ⇠ N(at|t, Pt|t)

at|t = at|t�1 +Kt⌫t
⌫t = y⇤t � Z⇤

t at|t�1 �Mtb
Kt = Pt|t�1Z⇤0

t F
�1

t|t�1

Pt|t = Pt|t�1 �KtFtK 0
t

(27)

The backward filter remains as in A.1.

B.2 MCMC algorithm

The priors:

p(↵0, h✏) = p(↵0)p(�0)p(h✏)

p(h✏) = fG(
s✏0
2 ,

�✏
0
2 )

p(↵0) = fN(0,) where  is sufficiently large.
p(�0) = fN(0,) where  is sufficiently large.
The likelihood for the state space model is:

p(y1, . . . , yT |h✏) = p(y|h✏) = p(y1)
TY

t=2

p(yt|Yt�1)

where Yt�1 = (y01, . . . , y
0
t�1)

0

log p(y1, . . . , yT |h✏) = �
PT

t=1 N

2 ln2⇡-12
PT

t=1 ln|Ft|� 1
2

PT
t=1 ⌫

0
tF

�1
t ⌫t;

⌫t = yt � Ztat|t�1 �Mtb

The joint posterior is :
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p(↵, �, h✏|y) = p(↵0, �0, h✏)p(y1)
TY

t=2

p(yt|Yt�1) (28)

where ↵ = [↵0
1, ...,↵

0
T ]

0; y = [y
0
1, ..., y

0
T ]

h✏ can be easily to sample from (28), but that is not the case for ↵ and �. An alternative way
to sample ↵t is to use MCMC algorithm; and the following joint density function is adopted.

p(↵, h✏|y) = p(↵)p(�0)p(h✏)p(y|↵, �, h✏) (29)

where
p(y|↵, h✏) =

QT
t=1(2⇡h

�N
✏ )

�1/2exp
�
�1

2h✏(yt � Zt↵t �Mt�)0(yt � Zt↵t �Mt�)
�

p(↵) = p(↵0)
Qn

t=1 p(↵t|↵t�1)

• Block 1: Draw ↵ from p(↵|y, �, h✏)

– Step 1: Sample ⌘+t from N(0, Qt), ↵
+
0 from N(↵0, P0), ✏

+
t from N(0, Ht). Then use

equation (3) and (4) to generate the y+,↵+.

– Step 2: Use the Kalman Filter (27) and Smoother (20) equations to compute the
smoothed vector ↵̂ = E(↵| y), and ↵̂+

= E(↵+| y+) (where ↵̂ is the smoothed esti-
mate given the actual observation y⇤ whereas ↵̂+ is the smoothed estimate given the
sampled observation y+).

– Step 3: Following Durbin and Koopman (2002), ↵̃ = ↵̂ � ↵̂+
+ ↵+ is considered as

the draw ↵ from p(↵|y, h✏)

• Block 2: Draw � from p(�0)p(y|↵, �, h✏) which is the multivariate Normal distribution
N(b, P )

P = (P�1
0 + h✏

TX

t=1

M 0
tMt)

�1

b = P

"
(P�1

0 b0 + h✏

TX

t=1

M 0
t(yt � Zt↵t)

#

• Block 3: Draw h✏ from p(h✏)p(y|h✏) which is the Gamma distribution G(

s✏t
2 ,

�✏
t
2 )where

s✏t = 1 + s✏t�1

�✏t = �✏t�1 +
�✏t�1

s✏t�1

⇥
(yt � Ztat|t�1 �Mtb)

0F�1
t (yt � Ztat|t�1 �Mtb)

⇤
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