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At least since Whelan (2002), discussion of computers’ impact on productivity growth has
emphasized obsolescence as driving high-tech assets’ depreciation.® Apart from obsolescence, though,
service-flows of computers and similar solid-state assets are widely thought to follow the one-hoss shay
or (incandescent) “light bulb” pattern. Reconciling one-hoss shay deterioration with obsolescence, and
both processes with presumed geometric depreciation of the aggregate computer stock, is one of the
hard problems of economic measurement. Recently Diewert and Wei (2015) reconciled cohorts of
simultaneously one-hoss shay individuals to geometric stock accounting under “somewhat idealized
conditions (steady growthin asset investments, steady ratesof growthin constant quality prices and
constant nominal costs of capital)” — assumptions that worked pretty well in their Australian computer
time-series. 2 Diewert and Wei also extended their reconciliation to nearly arbitrary cohorts (thus
allowing distributed service lives), but they did not explicitly say how much a change in the obso-
lescence rate would transmit to a change in the aggregate depreciationrate. One may also wonder if
well behaved cohorts would permit cohort-to-geometric-stock aggregation a la Diewert and Wei even if
their somewhat idealized conditions aren’t satisfied.

This essay constructs very well behaved cohorts — geometric ones (mostly) — from one-hoss
shay individuals subject to constant-rate obsolescence. As Diewert and Wei show, cohorts that
depreciate at a constant geometric rate aren’t necessary for geometric stock accounting, but they are
sufficient. Maybe some blend of not-quite geometric cohorts, in “idealized conditions” not quite met,
would be adequate for geometric treatment of many asset stocks, without special pleading.

Jointly analyzing geometric cohorts and one-hoss shay individuals requires variational methods
to uncover the probability density function of service-lives that reconciles them. Depending on specifics
that the essay spells out, that function has a closed-form representation in terms of tangible economic
parameterssuch as the finance rate, new-asset revaluation rate, the rate of quality improvement of new
assets over old, and the cohort depreciationrate net of realized obsolescence. Under the plausible
assumption that the service-life density is slow-to-move, the net depreciation parameter adjusts to
offset changesin the other parameters, confirming suspicions that an increase in the rate of obsoles-
cence does not transmit one-for-one to the overall rate of depreciation: so thereis some "clawback."

The assumption of a nearly fixed service-life density is testable, for knowing the density’s
algebraic form permits fitting age-price regressions with the exact Hulten-Wykoff survivorship correction
built in (in simple cases). Moreover, age-price regressions and statistical survivorship studies, which
draw on very different data, would identify overlapping subsets of the parametersthatinform an asset-
type’s cohort-level depreciation; if they agree, the system is sound.

% Views expressed hereareall mine, not my employer's.

! Karl Whelan (2002), “Computers, Obsolescence, and Productivity,” The Review of Economics and Statistics, vol.
84,n0.3 (August):445-461.

> W. Erwin Diewertand Hui Wei (January 16,2015), “Getting Rental Prices Right for Computers,” for IARIW 2015.



The basic mechanism for obsolescence clawbackis the contribution of an expected persistent
increase in the rate of quality improvement of ever-newer vintages to raising the effective discount rate.
The higher discount rate reshapes individual-level age-price profiles, pushing them higher, more toward
their age-efficiency counterparts (where the discount-rate is infinite). This partly offsets the direct
impact of new cohorts’ quality improvements, which depress old cohorts’ prices.

Discussions of obsolescence often make much of old assets' premature retirements in the face
of fitter entrants. The story outlined so far cannot accommodate early quits without a floor price for
used-asset sales (below which individuals are scrapped); so one is introduced, which has several effects.
First, “service lives” bifurcate into “retirement ages” versus (and less than) “lifespans,” which have
different but related probability distributions: the retirement-age density is observable and amenable to
survival analysis, but density of unobserved lifespans is almost invariant, enabling analytical tradeoffs
between the net depreciation rate and the density’s other arguments (such as obsolescence). Second,
the floor price by itself altersthe depreciation rate only slightly, yet by cutting the tails off future service
flows, it also has effects that resemble discounting. These are idiosyncratic: the extra discounting is
stronger for short-lived individuals than for long-lived ones. Third, the floor price breaks the heretofore
simple duality between geometric cohort age-price profiles and cohort age-efficiency profiles that do
not decay at a constant rate. Fortunately, the latter may be approximated as constant-weighted sums
of afew geometric processes, which are easy to handle at the cohort and stock levels.

The essay has seven sections. The first reviews the basic individual one-hoss shay model, which
the second embeds in a geometric cohort. The third section is the core: it adds obsolescence-as-quality-
change to the mix, derives a different service-life density to the no-obsolescence case, and adjusts the
depreciation rate to minimize the (Kullback-Leibler) discrepancy betweenthe two; it also adapts for
illustration a few rates Diewert and Wei borrowed from the Australian Bureau of Statistics. The section
takes pains to distinguish obsolescence from “net” depreciation. The former hinges on comparisons of
“new” asset prices (i.e., anold asset’s price back when it was new versus an actual new asset’s price now
versus the price an old asset would fetch now were it sold new); by the Law of One Price across new
individuals in the same cohort, obsolescence is thus a cohort-to-cohort comparison. The latter makes
more sense as a comparison across individuals within a cohort, as it is driven by different lifespans.

A fragmentary fourth section reminds that discounting is key to clawback: straightline individual
age-price forms, which have no discounting, allow full obsolescence pass-through into cohort-level
overall depreciation. The fifth section drops obsolescence to revisit the second, but adds a floor price,
which compels separate consideration of the retirement and lifespan densities. A difficult sixth section
then reintroduces obsolescence, combining the results of the third and fifth sections. This part of the
paper is least ready for implementation. Numeric sums-of-geometric representations are given as
approximations to nongeometric cohort age-efficiency profiles in both sections 5 and 6. A seventh
section concludes.

The paper is mathy, but this is put to the service of the argumentspresented. Readersmay
want Mathematica or Maple on hand to verify the results.



1. The Individual Case, without Inflation, Obsolescence, or a Scrap Value

Relative to its own service-flows when it was new, the service-flows at age s of an individual
characterized by a one-hoss shay age-efficiency profile are:

{1 for sbetween 0 and L
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...where Lis theindividual’s correctly anticipated service-life. Service-flows of a one-hoss shay asset give
no hint of when the thing will break, so the assumption of correct anticipation of the service-life is just
wrong. We’'ll replace the assumption soon by an expectational framework; but first consider how to
price the individual in (1) relative to an assumed-constant new price. The individual’s resale-price profile
is:

e-T(u—0)¢(u,L)du - 10 fOT' s=L

()

S
0

S o(u,L)du . _ )——1 for s between0and L
Ols )= 7 1k = {1-e

r

...wherer>0is the own rate of return (although if the new price indeed holds constant, this is just i, the
nominal rate of return), which we'll take to be constant through future horizons. The profile is the ratio
of twointegrals: the denominator integralis a normalizing constant, so that 6(0,L)=1. The resale price of
a used individual is the resale-price profile times the individual’s new-supply price: q(s,L) = g x 6(s,L).
The denominator integral’sreciprocal, timesthat same new-supply price, is also the individual’s baseline
user-cost:
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Away from age zero, the user-cost gives way to a rental-price profile, which always decomposes
into the product of the user-cost and the age-efficiency profile:
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...where, by abuse of notation, 06(0,L)/0s means the evaluation at age zero of the age-derivative of the
resale-price profile, asin (3). Form (4) is the key to constructing productive stocks of capital: as a ¢-
weighted average of past real investment flows (which therefore are now of various ages), all priced by
the user-cost. Alternatively, solving form (4) for ¢ shows the age-efficiency profile to be the ratio of the
age-s rental-price to the user-cost — a useful relationship that holds at any level of aggregation. For
one-hoss shay individuals, of course, the decomposition doesn’t mean much, since ¢=1 for s<L.

® Evaluate the age-derivativeats=0. Theresult, times theindicated “—“sign, is the baseline depreciationrate of a
new one-hoss shay asset: r/(e"—1). Baseline, because obsolescenceis not consideredyet. Notethatform (3)
would seemto lack the usualrevaluationterm:—0q,/ct. Butif we take seriously thatris anown rate of return —
i.e.,thatr=i-0alnq,/ot, whereiis a nominal finance rate — then therevaluation termisindeed presentimplicitly.
It's justthatding,/ot=0,so far. Notealsothatrneedn’tbe constantacross calendar time, though my derivations
do hold rfixed through the future horizons consideredin integrals that are reevaluated at each calendar instant.
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2. The Averaged/Cohort Case, without Inflation, Obsolescence, or a Scrap Value

The presence of that other argument in form (2) — not just s, but L too — as well as the
implausibility of correctly anticipating a one-hoss shay individual’s service life, compels consideration of
probabilistic aggregationacrossa cohort’s possible individuals. To embed one-hoss shay individuals
within a geometric cohort — alternatively, to spread an individual’s bets as far as a geometric outcome
— find the service-life density f(L) that solves:

e = [70(s,L) f(L)dL (5)

...where 8> 0 is the constant geometric depreciation rate of the cohort.* When (s, L) is of form (2), the
first and second variations of (5) with respect to age are:
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Substituting the first variation into the second, solving for f{s), then imposing the lower limit of

integrations — L, yields:
flL)=e*(1-e ")S(E+r)/r (7)

As the difference between two exponentials, the density resembles a Gamma. Itintegratesover all
nonnegative L to unity and has mean 1/8 +1/(r+3) and variance 1/8% + 1/(r+3)*. Moreover, f(L) implies

a survival function: )
1-F(L) = e [1+8(1 - e™Y)/r] (8)

...thatisrelevant for the Hulten-Wykoff correction to survivors’ bias in age-price regressions. Rather
than using an off-the-shelf survival distribution (e.g. one of Winfrey’s) to correct the fit of a thoughtless
regression:

In(qis/qi0) =P s + & i=1,..,n (9a)

...where qi;/q is the ratio of an individual’s age-s resale price to its original price,” ; is an everyday

error term, and—f3 is takenfor 6 — instead impose ex ante the correction thatis implied by the assumed
individual-level one-hoss shay form®:

In(qis/qio) = —In[1+3(1 — e™%)/r] + €; i=1,...,n (9b)
Both d and r areidentified. Alternatively, and as a check on the empirical consistency of the one-hoss

shay / geometric specification, fit (7) or (8) with observations on retirement ages. If the specification is
correct, then (7)/(8) and (9b) should yield similar estimatesfor & and r from quite dissimilar data.

* The as-yetunknown f(L) is defined all the way down to 0, in principle, so why is the integral only overL>s? From
(2), remember that6(s,L)=0for0< L<s,so fo 0 f(L)dL=0. The same consideration is atworkin(10), below.

> This departs from the set-up so far, which took g, to be constant across individuals, by the Law of One Price.
® Thatis, subtractthe log of the right side of (8), with s replacing L, from —3s, the uncorrected right side of (9a).

The correction follows from notingthat the survivors’ average resale profileis: 8(s)= fsooe(s, L)f(L|IL = s)dL,

wheref(L|L 2 s) = f(L)/(1-F(s)), while the proper cohort average resale profileis: 8(s)= fs°°e(s, L)f(L)dL, here e,
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Applying the same density (7) to evaluate the expected age-s rental-price for one-hoss shay
individuals within a geometric cohort gives:

-6L -rL
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...where the individual-level rental-price, qo r/(1—e™"), follows from the left side of (4). As the user-cost
and age-s rental-price are identical for one-hoss shay individuals, the expected (i.e., cohort) user-cost
follows almost trivially, differing from the expected rental-price only in the lower limit of integration:

[ e 0L(1-e~"L)5(5+7)
do (r+3) = dofy = X

dL (11)

r

The ratio of the cohort rental-price to the cohort user-cost returnsthe cohort geometric age-efficiency
profile: ®(s) = e™.

An aside: One sometimes sees the cohort age-efficiency profile built directly from individual
efficiency pieces. Constructing a cohort geometric efficiency profile from individual one-hoss shay
profiles is deceptively easy:

D(s)=e ™= [ se~ x 1dL (12)

What is this negative-exponential density? It is not the density of service-lives — that’sform (7).
Rather, itis a normalized compound of the service-life density and individual-level user-costs:

T e_8L(1—e_TL)6(6+r)

5L _ 1_e—TL T
de’ = © r e~OL(1-e~TL)5(5+7) (13)
S5 — = X - dL

The notion of a direct density as a compound holds beyond one-hoss shay. Statisticalagenciesthat

assemble cohort age-efficiency profiles as simple weighted averages of individual ¢-profiles (indeed
some do) need to consider what their weights really mean.’

3. Individual and Cohort Cases, with Constant-Rate Inflation and Obsolescence, but No Scrap Values

This discussion began by assuming that new-asset purchase prices were constant, and that
different cohorts were distinguished only by their different installation dates, not by any underlying
differences in quality. Suppose instead the current new supply-price increases at a constant ratew, and
that newer cohorts are simply better, at the current or “frontier” new-supply price, thanolder ones
(which must therefore be devalued) — in fact, better than older cohorts were when they were the
frontier, and better than older cohorts would be currently were they somehow restored to their original

’ Martin§. Feldsteinand Michael Rothschild make the same mistake in “Towards an Economic Theory of
ReplacementInvestment,” Econometrica,vol.42,no.3 (May 1974), pp. 393-424, particularly pp. 403-404.
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luster and durability. (This comparison makes more sense for non- one-hoss shay individuals, where the
effects of wearing out are palpable.) For individuals with equal service-lives, obsolescence shows itself
as a reduction in the service-flows of such fully-restored individuals from an older cohort relative to
flows from individuals from the frontier cohort, for it is always the frontier cohort that sets the terms for
the user-cost. If the rate of improvement (b > 0) is constant through calendar-time and horizons, then
the service-flows of an age-s individual characterized by a one-hoss shay age-efficiency profile vis-a-vis
itself when it was new, relative to those of a genuinely new one-hoss shay individual at the frontier, are:

e Pt x 1 for s between 0 and L

olsL) ={ 0 fors =1L (14)

...where tis the calendar-date and v, the vintage, is the date the age-s cohort was originally installed.
(Note t—v=s.) This is a narrow conception of obsolescence: it excludes quality improvements that
lengthen service-lives, and it only counts devaluation relative to the frontier, not of the frontier as such
in the wider marketplace of substitutes and complements. Relative to itself, ¢ still follows form (1), and
relative to an intermediate vintage issued a fixed length of calendar-time away, ¢ = e?M172) The

individual’s resale-price profile, relative to its original, date-v supply-price, qo(v), is:

_p(i—n+b)(s—-L)
fL e e—i(u—s)e—budu eTcSe—bS 1e—b
e(srtrvr L) = fSL e = tmnt 1—e—(i-n+b)L (153)
0 -

o —i(u—0)g—bu gy
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(i-n+b)s_ p(i—n+b)L
L for s between 0 and L
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...wheree™ ) representsthe frontier supply-price at datet, relative to what the frontier supply-

price was at date v < t; e =e "™ is the as-if-new price of a vintage-vasset were it restored to its
original newness and survivability as of datet, relative to the actual date-t frontier purchase-price; and

e™“=) shows discounting by nominal interest rate i, constant through future horizons u2s. Inthe

second row of (15a), I've restored t—vto the leading term to highlight the distinction betweenaccumu-

m(t-v) (t=v)

lations of naive inflation e and realized obsolescence e, on the one hand, and expected future

obsolescence (i.e., i~m+b instead of just i-m), on the other.®

The resale price of a used individual is the supply price that prevailed when the individual, then
on the frontier, was bought new, back at date v (thatis, qo(v)), times the resale-price profile 6(s,t,v,L):

q(s,t,v,L)=qo(v) O(s,t,v,L).

For large enough m, 6(s,t,v,L) might not decline monotonically as age and time progress. An alternative
representation shunts purchase-price inflation tothe purchase price itself, replaces the historical supply

T(t-v)

price by the current supply price, qo(t)=go(v)e™ ", and so adjusts the age-price profile to:

® With an eye toward empirical application, one mightalsodistinguish the b in the realized obsolescence term from
the b thatsupplements i—t. The former mightjostle fromyearto year, with thelatter stable.
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(i—m+b)s_ p(i—n+b)L
—b(t-v)€ e
9*(s,t,v,|-) _Je — for s between 0 and L. (15b)
0 fors=1L

Both qq(t)and go(v) are or were observed, respectively. A third representation builds realized
obsolescence into the old asset’s as-if-new-at-date-t price: o (v, t) = qo(t)e ™ = o (v)e™ ), Thisis
not directly observable, but it might be approximated by hedonic methods, where 7b is the supply-
price inflation rate of a constant-quality new asset. The corresponding stripped-down age-price profile:

e (i—m+b)s_ g(i—m+b)L
e**(s L) — W fOT S between 0 and L (15C)
0 fors>1L

...isessentially expression (2) again, but with r explicitly replaced by i-m+b.

Modelers may choose 0(s,t,v,L), 6*(s,t,v,L), or 9**(s,L) to suit, but each specification implies a
different apparent discount factor in the rental price. For a vintage-v, age-sindividual at date t, the
necessary rental-price specifications — which all evaluate numerically the same — are:

) 90(s,tv,L)  30(sitv,L wbltmy)  i—T+D
qolv) (1 (s, t,v, 1) — LR HELVD) _ g () gledhe) _Lotb o (16a)
. * 20°(stvl)  80°(stv,L) —v)___L=nb
qom((z — 16" (s,t,v,1) - Ll 90 Ly > G0(t) € e (16b)
. *% 66**( ,L) i—mt+b
qO(Vrt)<(l —n+ b)e (S; L) - a: ) = CIO(V:t) 1_;—(’;[jr:+b)L (16C)

...where the relevant discount factors are shaded. For the frontier vintage (i.e., v=t), both go(v,t) and
Jo(v) reduce to qq(t). This gives the user cost:

i—n+b
Qo (t) 1—e—(i-n+b)L

so the ratio of the vintage-v rental-price to the user cost is "), the relative-to-frontier age-efficiency
profile of (14). Observe the user cost is the product of the current-supply price and the reciprocal of the
denominator integral of (15a).

Note how different constant-rate realized obsolescence is as a mode of depreciation, at the
individual level, from ordinary "net" channels: wearing out (which is suppressed in one-hoss shay assets)
and discounting. The former, as a geometric process, operatesequally across short- and long- lived
individuals and betweenthe age-efficiency and age-price domains. The latter two vary across
individuals, driven by the Law of One Price for new-asset purchases: a cohort’s short-lived members
must “pay for” their original purchase-value in the form of faster depreciation than long-lived members’.
Aggregating tothe geometric cohort, where realized obsolescence and net depreciation are summable
rates, b + 0* > 0, effaces the distinction. However, anticipated obsolescence does have differential
effects, via “pumping up” the effective own-interest ratefromi—mwtoi—m + b. As a higher discount rate
elevates the individual age-price profile (in the no-tomorrow limit, all the way to the age-efficiency



profile), it slows the pace of individual depreciation; so one should expect, for an essentially unchanged
service-life distribution, the comparison b+ 8° >b + 8* > 8° > 3* > 0 to prevail for the cohort, where net
rate 8* incorporates the effects of higher discounting, while net rate 8° does not.

To formalize the argument, calculate the In-change of the resale-price profile (15a)° with respect
to a marginalincrease in the long-run rate of quality improvement:

dlno(s,t,v,L) _ s e(i—n+b)s_L e(i—n+b)L L
ab - oli—m+b)s_gli—n+b)L  1_g—(i-n+b)L (17)
If b never enteredthe discounting — i.e., if every vintage’simprovement came as a complete surprise

against prior expectations of no improvement — the only effect would be direct: din e™*/ob=—s.
Instead, individual responses soften the direct effect, depending on age and service-lives. To see the
difference, borrow some rates from Diewert and Wei, who supply 6.627% and —14.096% as long-run
values of the annual Australian government nominal interest rate and quality-adjusted computer-price
growth-rate, respectively. Putting these in continuous terms gives i = In(1+.06627) = .06417 and 1=b =
In(1-.14096) = —.15194. Suppose further that = =.03417, for a naive own-rate of return of i~ = .03.
This implies b =.18611, so quality doubles every 3% years — about half the rate of Moore’s Law. A plot
of (17) with these values, for individuals L = {3, 6,9, 12, 15}, shows the departuresfrom the direct effect
(though the overall effect is still downward, indicating a hastening of combined depreciation):*°

Next, inspect resale-price and rental-price profiles for the same five individuals for the distinctly
non-marginal contrast b = .18611 versus 0'* (but keep i=.06417 and 7=.03417). In the following six plots,
solid blue lines represent the case of rapid quality improvement (b =.18611); dashed red lines show the
case of no improvement (b = 0). The top row of three plots are of individual resale-price profiles (15a),
(15b), and (15c), left-to-right. The bottom three show the corresponding rental-price profiles (16a),
(16b), and (16c), left-to-right, relative to their respective supply prices qq(v), qo(t), and go(v,t). (Only
Jo(v) isin fact unchanging as the assets age.) Note all the resale-price profiles begin at 1, per the Law of
One Price, while the rental-price profiles begin at levels inverse to their individual service lives. User
costs specific to each individual are read off the vertical (i.e., age-0) axes of the rental-price plots; they
agree across all three treatments...

? Starting from form (15b) would give the same result, but using (15¢) would miss the leading“=s” in (17).
1% biewert and Wei work in a discrete-time framework. They also restrict cohort-level Lto 3 or 4 years.
" N.B.: Until 1985, BEA’s computer price index was flatand did not adjust for quality improvement — i.e., i=b=0.
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Resale Price vs Original Purchase Price Resale Price vs Frontier Purchase Price Resale Price vs As-If-MNew Purchase Price

Rental Price in Terms of Frontier Purchase Price Rental Price in Terms of As-If-New Purchase F'ric-'-(ls)

Now compare column-by-column: The left two plots show the full effects of inflation, realized obsoles-
cence, and discounting, and so agree with resale and rental profiles (15a) and (16a), with qo(v) set to 1.
The middle two plots abstract from naive inflation, per forms (15b) and (16b), with g, (t) implicitly held
to 1 through time. Blue lines in the middle plots fall a bit more steeply than in the left two, while dotted
red lines in the middle plots either fall more steeply thanin the left plots or do not increase at all; the
differences are all due to the absence of the leading €™ from (15b) and (16b). The right two plots
remove both inflation and realized obsolescence, e™™®”, asper (15¢c) and (16c), but fix qo(v,t)at 1. Here
the solid blue lines are everywhere above their dashed red counterparts (which matchthe dashed red
schedules of the middle plots), showing the effects of a large positive b on the discounting.

All six plots further agree that neither realized nor anticipated obsolescence induces early retire-
ments(!) This flies against the received wisdom on computer retirements, and indeed against common
sense. Mechanically, early retirementsin the plots would require a positive scrap-value / floor for the
resale-price, below which an individual would be retired (and its further value in the cohort set to zero).
Even small scrap values would have big effects in facilitating early retirements. For example, the thin
black lines in the three resale-price plots equivalently represent the profile through time since date v of
a scrap price that beganat5 percent of the vintage-v original supply price, then inflated thereafter at
the same rate as the naive rate on new asset prices (1 = .03417), though without quality improvement.
Individual retirementsat a positive price would always occur sooner than at the zero-price lifespan,
disproportionately so for long-lived individuals; and the effectis amplified under obsolescence.*?

2 This is easyto seein thefirst two resale-price plots, where the longest-lived i ndividual (with L=15 years ata zero
floor-price) wouldberetired atage 14.4 absent obsolescence versus age 12.1 for persistent b=.18611. In thethird
resale-price plot, therearetwo scrap-price schedules: the solid oneincreases atrate.18611to maintaina proper
comparison with a go(v,t) thatis artificially fixedat 1 despite rapid quality improvement, while the dot-dashed one
is fixedat.05 (asinthe middle plot), given no quality improvement. Still, comparetheage wherethe 15-year
dashedred lineintersects the thindot-dashed blackline (14.4)to the age wherethe 15-year bluelineintersects
the thin upwardly-curved black line (12.1).



Nonetheless, standard SNA practice and a dearth of reliable scrap-price data restrict attention,
for now, to a zeroscrap-value — permitting no obsolescence-induced retirement of any individual asset.
Given this restriction, it is hard to see how the distribution of service-lives would change much, either,
relative to the case of no obsolescence. This is the hook we will use to compare depreciation rates
across the two cases. Following the steps of (5)-(7), we seek the service-life density that solves:

(i-n+b)s _ e(i—rt+b)L

e (84 b)s _ fs obs® — e f(L)dL (19)

...where &* prevails for b>0, as against 6° for b=0. (Overall depreciation is the sum: §*+ b versus 8°.) The
hypothesis that obsolescence is over-counted implies & > 8*, but by how much? Canceling e™ from
both sides and carrying out the same steps as in (5)-(7), find:

fiL)= e (1 e Y §* (5*+ =+ b)/(i— 7 + b) (20)
...which has mean 1/8* + 1/(8*+ i — 1 + b), variance 1/5** + 1/(8*+ i —nt + b)?, and survival function:
1-F(L) = e [1+8*(1 — e ™Y /(i = 1+ b)] (21)

Diewert and Wei cite 39.22% as the Australian Bureau of Statistics’ discrete annual depreciation rate for
computers, given that agency’suse of quality-adjusted deflators, which implies a continuous rate of
In(1+.39220) = .33089. Now suppose, with Diewert and Wei, that ABS “got it right,” so the continuous
depreciation rateis the sum of the rates of realized obsolescence and ordinary depreciation in the
presence of anticipated obsolescence: .33089=b + §*. For obsolescence rate b =.18611 as above, this
implies 8*=.14478. As an alternative, suppose ABS “got it very wrong” and did not account for quality
improvement, like BEA before 1985. This is tantamount to using form (7) for the service-life density,
with r=i—m =.03as above. Although densities (7) and (20) resemble each other, nonetheless & cannot
be adjusted enough, for an unchanged i—m, to close fully the discrepancy between the two densities that
is induced by cutting b from .18611to0 0. But we can tryto come close. One way is to choose 0 to
minimize the Kullback-Leibler discrepancy between (7) and its target density, (20):

¢ o tion | e H1-etr)p THLIE
mjn f e 3 (1—e-M)§o ——— In = Jr‘i__“n — | @2
5 L=n e—8'L(1 — g—(i-n+b)L)§+ ———

By this criterion, the continuous-time &° that nearly immobilizes the density function is 8° =.19398,
which is about what one would find just by equating means: 8° =.19274. The resulting no-obsolescence
density approximately coincides with the density that prevails when b =.18611. (See the plot on the
next page.) The procedure makes & an implicit function of the effective own-interest rate:i —m + b.*®
We finish confirming the suspected ordering:

 Now, i and mmightvary as well, so & would too. Yet Diewertand Weitake the rates to representlong-run
averages,andsowilll. Still, grounding a nearlyfixed density on possibly flighty parameters begs a big question.
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b+8°>b+56*>8°>8*>0
.380>.331>.194> .145>0

The difference between &° and 8* is over a quarter the size of b and so is an unignorable clawback. If
instead ABS “only got it somewhat wrong,” then it added b to the no-obsolescence §° without adjusting
for anticipations: b + 8° = .380.

Eszsentially Unchanged Retirement Density
With versus Without Obsolescence

(23)
Of course, one should verify the presumption of an unchanged service-life distribution by
estimating the system’s parametersin a consistently corrected age-price regression, either:
Inlajys/Ao(V)] = (m=b)s —In[1+6*(1 — e ) J(i— 7 + b)] + g i=1,..,n (24a)
or:
Inla;ys/Ao(t)] ==b s—In[1+5*(1 - e ™0 J(i =+ b)] + & i=1,..,n (24b)

The first form (of a vintage-v, age-sindividual’s price relative to its original date-v price) identifies 6*, i,
and b. The second form (of the same vintage-v, age-sindividual’s price relative to the current frontier

price) identifies 8*, b, and mi. A survival study based on (20) or (21) would identify 6* andi—m + b. A
joint price and survival study would be more convincing than either alone.

Applying density (20) to evaluate the expected/cohort age-srental-price for obsolescing one-
hoss shay individuals within a geometric cohort yields:

. =8*L (4 _,—(i-7+b)L) s*(S*4 i _
, * o —g*s_p b(t—y) [  i-m+b e (1-e )8*(8*+i — m+b)
Qo(t) i—mt+b+d)e ) = g (t) e fs PR PE—

dL (25)

..Where the individual-level rental-price, qo(t)e™(i—n+ b)/(1 — e "™"), is from (16b). The expected/
cohort user-cost is nearly the same, but it is evaluated at s=0 (and so v=t):

. —8*L(4 _,—({i—7m+b)LY s* (g% i _
] * o i—n+b e (1-e )6 (8*+ i — 7 +b)
Qolt) (i=7+b+8) = qo(t) f;” — o x

dL (26)

i—7+b

11



The ratio of the cohort rental-price (25) to the cohort user-cost (26) returns the cohort geometric age-

*+b)s
e_(8

efficiency profile: d(s) = . As we have seen, this decays more slowly than rate d+b, due to the

obsolescence-boosted discount rate.

4. Fragility of the One-Hoss Shay Result: Interest-Insensitive Individual Age-Price Profiles

Earlier | claimed that the service-life density (7) “resembles a Gamma.” Infact, to the nearly
coincident densities plotted in (23) may be added a third, a genuine Gamma form:

Foga-1
[ (a)eSL

fi)= (27)

...with particular values & = .208 and a = 2. Moreover, the Gamma retirement density is exact for an
obsolescing individual age-price profile:

B'(s,t,v,L) = et (1-s/L)*? L (28)
...inthe geometric cohort:

Golt) €572 = go (0)f)” 75 (1 -2)

a—1 Faja-1

[(a)edL (29)
On the other hand, density (27) is also exact for parameterizations of (28) and (29) with b set to 0 (or to
any other value, for that matter). Unlike the one-hoss shay case, form (28) — which no one would apply
to a computer — allows full obsolescence pass-through, because it does not depend on the discount
rate. Conversely, the implied rental-price (= user-cost x age-efficiency profile) is sensitive to the
discount rate, but in a waythat is transparent to obsolescence, in that the cohort rental-price:

(30a)

= =2 Fopo—1
. 2\ ,—0s-b(t-v) _ ©fa-1 . —b(t-v) s A2 (i—m+b)(L—s)+a—1 5L _
Qo(t)i—m+ b+ O)e = qo(t)fs ( . +i—m+ b) X e (1 L) Gmtb)ltosl (et dL

...divided by the cohort user-cost:
’S’(XLOL—l

(a)eSL

a-—1
L

Qo(t)i =7+ b+ 8) = qot)fy” (24 i—m+b) dL (30b)

—8s—b(t-v)

...returnsa cohort geometric efficiency profile, e , undiminished by obsolescence.

So, just how sure are we that individual computers really are one-hoss shay assets?

" For a sustained discussion of form (32), see Sliker (2014), “Implications of Geometric Cohort Depreciation for
Service-Life Distributions,” a draft awaiting supervisory approval for admission to BEA’s Working Paper collection.
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5. Individual and Cohort Cases, with a Positive Scrap Price but No Inflation or Obsolescence

The framework so far cannot induce premature retirements if a one-hoss shay individual
remains in service for as long as it still has a shred of value. To prepare for obsolescence-induced
retirements, adopt the expedient of a floor-price that is a constant fraction0 < k < 1 of the quality-
unadjusted frontier supply price qo.*° To focus thoughts, restrict .==b=0 (so r =i —7 + b is just i again).
The resale price of a one-hoss shay individual works out as:

erm g

erS_grm ers -2
als,m) = qo((l—k)m+k) =q, i for sbetween 0 and m (31)
0 fors=m

...where the floor-price is qok and the retirement ageis m < L.*® An example profile, for qo =1, k =.19
(way too high but at least visible in the plot), r=.07, and m=10, is the solid blue schedule below. (The
dotted red line represents the continuance out to L.)

Resale Price
1.0

06 (32)

The corresponding individual rental-price is:

rm_

k
{qor;m—_l fors between 0 and m
0 fors=m

(33)

This is also the user-cost, so the age-efficiency patternremains the standard one-hoss shay ¢=1. The net
present value integral of the rental-price:

e’Mm—k

erm—1

qofsme‘r(“‘s) T du (34)

m-s)

...falls short of q(s,m) in (31) by the amount g, k e™™), which s the discounted value of the floor-price.

> Afuller treatment would showflexible inputs progressively reallocated from older assets toward newer ones.
'®In principle, mis observable from that final transaction whereby the firm sells the asset to the scrap dealer. The
zero floor-price lifespan, L, really not observable now, wouldbe In[(e" ™" —k)/(1 —k)]/r. |f k=0 then m=L.
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Despite the positive floor-price, one may still embed one-hoss shay individuals in a cohort
geometric price profile, with a different retirement-age density. The first and second age-variations of:

e = " ((1 —k)%n+k>f(m)dm (35)

...giverise to a linear differential equation (in m):

, rem—k _ r+8 _§m
fim) = 52K fim) = -5 T2 (36)
...that solves as:
fim) =™ ("™ —1)"* Betale™™, 1/k + &/r, 2-1/k] 8(5+r)/(rk) 2 (37)

Alternatively, using the probability density function transformation method, *® find the density of (zero-
price) lifespans, which are not observed, but which would be insensitive to early retirements:

fiL) = e (et — 1) Beta[1/(k+(1-K)e™), 1/k + 8/r, 2-1/k] (1~K)"* 5(5+r)/(rk) (38)

The two densities are similar but not the same. The lifespan density satisfies:

S— erL

e = lujgsyy mr r W 9

...where the lower limit of integration represents the value of L for which an s-year old asset attains the
floor-price k. Forms (35) and (39) in fact represent equivalent approaches to the same problem, with
solutions expressed in terms of observable (i.e., m) versus invariant (i.e., L) distributional measures of a
cohort’s durability.

Unfortunately, | have not found survival functions for (37) or (38) with simple representations.
This presents a problem for consistently corrected age-price regressions. While an age-price estimation
system here would have only three parameters — §, r, and k — tempting a grid-search with a numeric-
integralreplacing the survival function, the larger problem is that for all practical purposes the system is

7 When thefirstargument of an “Incomplete Beta function” asinequation (37)is O (i.e., as m—), then the
functionitself equals 0; when thefirstargumentis 1 (i.e.,, when m=0), then the function is “complete” andequals
[(1/k+6/NT(2 —1/k)/T°(2 +&/r), whereI'(...)is the morefamiliar Gammafunction. Theratio of theincompleteto
the complete Beta function is the Beta cumulative distributionfunction from statistics, when the Beta function’s
parameters — i.e., 1/k + 8/r and 2—1/k — are both positive. This would permit plotting the formin Excel, by
subverting that package’s GAMMALN and BETA.DIST calls. YetO< k<% is thelikely range of relative floor prices,

Il (l+§—h) ]‘["__1_](2 +§+h) (- e=rm) B

_ n n =1\k r h=0 r rm o _ .
s02-1/k<0. Fortunately, }=0(j) nﬁ;%(z—%m) o e—rm)n Betale "™, 1/k+&/r—j, 2+n-1/k]is a
(clumsy) workaround forBeta[e™"", 1/k +&/r, 2-1/k], where n is the smallestinteger for which 2+n-1/k>0.

'8 ¢f. Mood, Graybill, and Boes, Introduction to the Theory of Statistics (1974), pp. 198-202. Still, inits own terms,
r+d 2

expression (42) solves the linear differential equation: f'(L) —% (% + k)f( L) = —67(1—k) eZ’L(k+(1—k)e’L)_2_6/r.
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not well identified. A statisticianinnocent of floor prices might fit a system such as (7)/(8) and (9b) —
thatis, with k=0 — in an internally consistent manner and find little amiss, apart from estimates of rthat

seem too high. The following table presents biased estimates of § and r obtained by minimizing the
Kullback-Leibler discrepancy between density (7) and the true (k > 0) but overlooked target density (37)

for various true values of 0 (i.e., .05t0 .35in increments of .05), r (i.e., .01to .15 in increments of .02)
andk (i.e., .01,.02,.05, .10, and.15):

Biased Estimates of 6§ and r when k is Neglected

k=.01
&) r— 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0.05 0.0485 0.0498 0.0499 0.04599 0.0459 0.0495 0.0499 0.0500
0.0122 0.0320 0.0520 0.0722 0.0924 0.1126 0.1328 0.1531
0.10 0.0989 0.0993 0.0995 0.095¢G 0.0957 0.0998 0.0998 0.0958
0.0146 0.0342 0.0540 0.0740 0.0940 0.1142 0.1343 0.1545
0.15 0.1483 0.1486 0.1490 0.1452 0.14583 0.1485 0.1495 0.1456
0.0169 0.0366 0.0562 0.0760 0.0959 0.1150 0.1350 0.1561
0.20 0.1977 0.1580 0.1984 0.1987 0.1989 0.1991 0.1992 0.1993
0.0150 0.0390 0.0585 0.0v82 0.0980 0.1179 0.1379 0.1579
0.25 0.2472 0.2473 0.2477 0.2481 0.2484 0.2486 0.2488 0.2489
0.0212 0.0414 0.0609 0.0805 0.1002 0.1201 0.1399 0.1589
0.30 0.2967 0.2567 0.2971 0.2975 0.2978 0.2581 0.2983 0.2985
0.0232 0.0437 0.0633 0.0825 0.1025 0.1223 0.1421 0.1520
0.35 0.3462 0.3450 0.34564 0.3468 0.3472 0.3475 0.3478 0.3480
0.0252 0.0460 0.0657 0.0853 0.1049 0.1245 0.1443 0.1641
k=.02
5l r— 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0.05 0.04592 0.04396 0.0497 0.0498 0.04599 0.0499 0.0459 0.0499
0.0142 0.0340 0.0541 0.0745 0.09458 0.1153 0.1357 0.1562
0.10 0.0981 0.0586 0.0990 0.0993 0.0954 0.0995 0.0996 0.0996
0.0186 0.0382 0.0580 0.0780 0.0981 0.1184 0.1387 0.15581
0.15 0.1471 0.1475 0.1481 0.1485 0.1487 0.1485 0.1491 0.14592
0.0228 0.0427 0.0623 0.0820 0.1019 0.1220 0.1422 0.1624
0.20 0.1962 0.1964 0.1970 0.1975 0.1979 0.1982 0.1984 0.1986
0.0267 0.0472 0.0667 0.0863 0.1060 0.1259 0.1459 0.1660
0.25 0.2453 0.2453 0.2459 0.2465 0.24659 0.2473 0.2476 0.2479
0.0306 0.0516 0.0712 0.0907 0.1103 0.1300 0.1459 0.1699
0.30 0.2945 0.2943 0.2948 0.2954 0.2959 0.2964 0.2967 0.2571
0.0344 0.0555 0.0757 0.0952 0.1147 0.1343 0.1541 0.1735
0.35 0.3437 0.3437 0.3437 0.3443 0.3448 0.3453 0.3458 0.3462
0.0381 0.0591 0.0801 0.0997 0.1192 0.1387 0.1584 0.1781
k=.05
&) r— 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0.05 0.0484 0.0450 0.0494 0.0485 0.0456 0.0497 0.0493 0.0458
0.0201 0.0401 0.0607 0.0816 0.1026 0.1238 0.1450 0.1662
0.10 0.0564 0.0971 0.09738 0.0983 0.09865 0.0988 0.0990 0.0991
0.0255 0.0502 0.0701 0.0504 0.1110 0.1318 0.1527 0.1737
0.15 0.14465 0.1451 0.1459 0.1466 0.1471 0.1475 0.1479 0.1481
0.0393 0.0603 0.0802 0.1001 0.1203 0.1407 0.1613 0.1820
0.20 0.1925 0.1931 0.1939 0.1547 0.1954 0.1955 0.1964 0.1968
0.0434 0.0703 0.0904 0.1102 0.1302 0.1503 0.1706 0.1911
0.25 0.2413 02411 0.2418 0.2426 0.2434 0.2441 0.2447 0.2452
0.0575 0.0801 0.1005 0.1204 0.1403 0.1602 0.1803 0.2005
0.30 0.2897 0.28592 0.2898 0.2506 0.2914 0.2522 0.2929 0.2935
0.0664 0.0897 0.1106 0.1306 0.1305 0.1703 0.1903 0.2103
0.35 0.3381 03374 0.3378 0.3385 0.3354 0.3402 0.3409 0.3416
0.0753 0.0992 0.1205 0.1408 0.1607 0.1805 0.2004 0.2203
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Biased Estimates of 6 and r when k is Neglected
(continued)

k=.10

&) r— 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
0.05 0.0475 0.0483 0.0488 0.0491 0.0493 0.0454 0.0485 0.04565

0.0300 0.0511 0.0727 0.0948 0.1171 0.1356 0.1622 0.1848
0.10 0.09465 0.0954 0.0963 0.0970 0.0975 0.0979 0.0982 0.0984

0.0489 0.0706 0.0916 0.1129 0.1345 0.1563 0.1784 0.2006
0.15 0.1418 0.1424 0.1433 0.1442 0.1450 0.1456 0.1461 0.1465

0.0673 0.0200 0.1112 01321 0.1533 0.1747 0.1863 0.2181
0.20 0.1892 0.1854 0.1903 0.1913 0.1922 0.1930 0.1937 0.1943

0.0855 0.1091 0.1307 01517 0.1727 0.1938 0.2150 0.2365
0.25 0.2366 0.2366 0.2373 0.2382 0.2392 0.2401 0.2410 0.2417

0.1037 0.1279 0.1500 0.1713 0.1923 0.2132 0.2343 0.2555
0.30 0.2839 0.2837 0.2843 0.2852 0.2862 0.2872 0.2881 0.2889

0.1218 0.1466 0.1692 0.1907 0.21138 0.2328 0.2538 0.2748
0.35 0.3314 0.3310 0.3314 0.3322 0.3332 0.3341 0.3351 0.3360

0.1398 0.1651 0.1881 0.2100 0.2313 0.2524 0.2733 0.2943

k=.15

&) r— 0.01 0.03 0.05 0.07 0.09 011 0.13 0.15
0.05 0.0468 0.0478 0.0484 0.0488 0.0490 0.0452 0.0453 0.0454

0.0405 0.0635 0.0864 0.1100 0.1338 0.1579 0.1821 0.2064
0.10 0.0933 0.0942 0.0951 0.0959 0.0866 0.0970 0.0574 0.0977

0.06597 0.0832 0.1156 0.1383 0.1613 0.1846 0.2081 0.2318
0.15 0.1399 0.1405 0.1415 0.1425 0.1434 0.1441 0.1447 0.1452

0.0982 0.1226 0.1454 0.1678 0.1904 0.2132 0.2361 0.2553
0.20 0.1865 0.1869 0.1878 0.1888 0.1898 0.1907 0.1915 0.1922

0.1265 0.1517 0.1730 0.1976 0.2200 0.2426 0.2652 0.2880
0.25 0.2331 0.2333 0.2341 0.2351 0.2362 0.2372 0.2381 0.2389

0.1550 0.1805 0.2043 02272 0.2458 0.2723 0.2947 0.3173
0.30 0.2797 0.2799 0.2805 02814 0.2825 0.2835 0.2845 0.2854

0.1832 0.2091 0.2334 0.2567 0.2785 0.3020 0.3245 0.3468
0.35 0.3264 0.3264 0.3270 0.3278 0.3288 0.3298 0.3308 0.3318

0.2113 0.2377 0.2624 0.2860 0.3090 0.3317 0.3542 0.3767

Except for a few nonmonotonic estimates of high-end & as r passes from .01 to .05 (shaded yellow), the
table’sentries are well behaved, and their message is clear: neglecting k does little harm to estimates of
0 but biases estimatesof r upward, particularly for large 6 and large k. Without convincing dataon k, an
age-price grid-search corrected by the numerical survival function implied by density (37) would need to
have r pre-set to some reasonable value, in hopes of fitting  and k.

Now, a too-high value of r, takenliterally, implies discounting too close to the no-tomorrow
limit. Yetthe imposition of a floor-price does cut the farthest tomorrows off every individual asset, for
which the best response would have the flavor of extra discounting.'® The common-sense view that
premature retirements must imply faster depreciation should be reconsidered in light of this ersatz
discounting. This leads to a question: For a given value of rand an effectively fixed distribution of zero-
price lifespans, what happens to the depreciation rate if a positive floor-price is imposed where before
there had been none? To approximate an answer, choose a value of 3 to minimize the Kullback-Leibler
discrepancy between the lifespan density (38) and target density (7), where the target’sdis already
known and fixed. Per the scant bias in § just found, thereis little reason to suspect much changein the

' For example, the best fit of the individual blue scheduleinplot(32), all the way down to 0 atage 10, against the
Ts_e?lo

. . e
innocentage-price form -

o finds a faux 7 of about.168, well abovethegiven r=.07. Faux¥ vary across

individualdraws of m, with shorter mleading to higher 7.
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cohort depreciation rate, andindeed that is the case. The following table shows that values of & needed
to hold the lifespan distribution roughly invariant when a positive floor-price is introduced are little
different from their zero floor-price counterparts. (For k < .05, differences are indiscernible.)

Without Obsolescence, &§ Changes Little when k is Introduced

k=.05

6, r—| o0.01] 003 o005 o007 o009 041] 013] o045
0.05 0.0501: 0.0501: 0.0500: 0.0500 0.0500: 0.0500 0.0500: 0.0500
0.10 0.1002: 0.1002! 0.1001: 0.1001! 0.1001: 0.1001 0.1001: 0.1001
0.15 0.1503! 0.1503; 0.1502: 0.1502; 0.1502: 0.1502; 0.1501: 0.1501
0.20 0.2004: 0.2004: 0.2003; 0.2003! 0.2003; 0.2002. 0.2002; 0.2002
0.25 0.2506! 0.2505! 0.2504! 0.2504 0.2504! 0.2503 0.2503! 0.2503
0.30 0.3007; 0.3006: 0.3005: 0.3005! 0.3005; 0.3004 0.3004: 0.3004
0.35 0.3508: 0.3507! 0.3507 0.3506} 0.3506: 0.3505  0.3505: 0.3505
k=.10

6, r—| 0.1 003 o005 007 009 041] 043] 045
0.05 0.0504; 0.0502: 0.0502; 0.0501} 0.0501; 0.0501 0.0501; 0.0501
0.10 0.1008! 0.1006: 0.1005: 0.1004: 0.1004! 0.1003 0.1003! 0.1003
0.5 01513 0.1511! 0.1509: 0.1508 0.1507; 0.1506 0.1506; 0.1505
0.20 0.2018: 0.2015; 0.2013; 0.2012} 0.2011! 0.2010 0.2009; 0.2008
0.25 0.2523: 0.2520! 0.2518: 0.2516! 0.2515: 0.2514 0.2513: 0.2512
0.30 0.3028} 0.3025: 0.3022! 0.3020! 0.3019; 0.3017 0.3016; 0.3015
035 0.3533! 0.3530; 0.3527 0.3525! 0.3523} 0.3522 0.3520] 0.3519
k=.15

6, r—| o0.01] 003 005 007 009 041] 043] 045
0.05 0.0508: 0.0505; 0.0504: 0.0503i 0.0503: 0.0502! 0.0502: 0.0502
0.10 0.1019: 0.1014; 0.1012: 01010} 0.1009: 0.1008 0.1007: 0.1006
0.5 0.1530! 0.1525; 0.1521! 0.1518; 0.1516! 0.1515 0.1513; 0.1512
0.20 0.2042! 0.2035: 0.2031! 0.2027; 0.2025! 0.2023: 0.2021: 0.2019
0.25 0.2550: 0.2546; 0.2541: 0.2537; 0.2534! 0.2531 0.2529: 0.2527
0.30 0.3050: 0.3057; 0.3051! 0.3047; 0.3043; 0.3040 0.3038; 0.3036
0.35 0.3552: 0.3568; 0.3562; 0.3557; 0.3553: 0.3550  0.3547; 0.3544

One can’t fault designers of capital-retirement surveys for not including questions about scrap valuesin
an era when obsolescence didn’t matter much.

A drawback of allowing a positive floor-price is that it induces a mismatch betweena thoroughly
geometric cohort resale-price profile, as per (35) or (39), and a rental-price profile that declines faster

—r(m-s) __

than geometric. Thisis a consequence of any individual’s “retirement bond,” qo k € i.e., fromthe

line just below expression (34) — having a rental value of zero:
rqok e —d(qo k e™)/s=0.

Weight individual-level rental prices in their productive years (33) by (37) for the cohort rental-price:

eTm -

Go (r+d) d(s) = f:o qor erm_’; e (e - 1) Betale™, 1/k + 8/r, 2-1/k] 8(8+r)/(rk) dm (40)
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This indeed starts at g¢ (r+0) e at age s=0, confirming the standard geometric user-cost. Then it falls
away, converging ultimately on gq (r+8)r:? e at asymptoticrater. Fortunately, a weighted sum of

several exponential terms approximatesthe rental-price profile reasonably well:

go (r+d) @(s) = g, rr +8 (r+k8 (w, e W e+ (1-wy —wy)e™ ) e’ (41)

+ k8

...where short, intermediate, and asymptotic rates of convergence (i.e., B, > B, > r) rot in turn, leaving
the converged-on remnant profile. For depreciation-rate, discount-rate and floor-price grid-values:

6 X r X k =
{.01,.07,.13,.19,.25, .31, .37} x{.01, .05, .09, .13, .17, .21, .25} x {.025, .05, .075, .1, .125, .15, .175, .2}

...a pooled nonlinear regression of each numerical evaluation of (40) across 101 equally-spaced ages
from 0 to In(1000)/52° for each (,r, k)-combination generates weightsand rates:

wi =—186 w, =.560
B]_ = 3,, + .0714 8.516r1.43k—1.34 Bz = 2,. + 9-43 8.902 r.133 k1.43

...that are sufficient to make (41) a good approximation to (40). For the approximate cohort age-
efficiency profile, divide (41) by go(r+d).*

6. Individual and Cohort Cases, with a Positive Scrap Price, Inflation, and Obsolescence (...Difficult)

Now the math can just about describe the common-sense idea that obsolescence induces early
retirements. It can also assess the effects of early, obsolescence-driven retirements on depreciation and
deterioration. Adjusting (15a/15b/15c) from section 3 to admit a floor-price — alternatively, adjusting
(31) from section 5 to allow inflation and quality improvement — will bring us to right-truncated nearly
geometric cohort-level resale-price profiles and faster-than-geometric cohort-level rental-price profiles.
But tractable analytic results will not often obtain here, so we will turn to numeric demonstrations. To
begin, reconsider a plot like (32), with r explicitly parted into the difference between the nominal rate of
return (i) and the expected naive inflation rate (rt); also admit a constant positive anticipated-and-
realizedrate of obsolescence (b). Assigning realized nominal inflation to the new-supply price amounts
to the treatment shown in the middle set of plots in (18), on which we’ll focus to take advantage of a
floor-price schedule that stays flat.?? The plot just below redraws age-price profiles for four individuals.
All are retired when their resale values have declined to k = 5 percent of the frontier supply price:

2% At age In(1000)/5, the cohort’s resale value has depreciated to a thousandth of its starting value.

*! The technique of approximatinga non-geometric profile by a linear combination of geometric pieces has
potentially wide application, making non-geometric cohorts aboutas easyto compute as geometric ones.
Depreciationresearchers wishing a least-action statistical agency to implement their findings would be wel |
advised to supplythe multi-geometric approximation, with well-chosenrates and weights.

2 Thatis, the relevant new-investment price in this section is qo(t), equivalently go(v)e™ ™.
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(42)

Without a floor value (i.e., for k=0), the first three individuals would have been held to their full lifespans
of 5,10, and 15 years, respectively. But obsolescence transforms what had been downwardly concave
resale-price profiles into downwardly convex forms, particularly for long-lived individuals, leading to
long gaps between retirement ages and physical lifespans. Infact, the fourth individual in the plot, its
path given by the dashed blue line, is retired just afterage 16 but has no finite lifespan. To describe an
obsolescing individual’s resale-price profile vis-a-vis the persistently inflating frontier new-supply price,

t-v)

do(t)= qo(v)e™™™, write:
o(i=m+b)s _ e(i‘;)m—k
—b(t—v) —bm _
e - s T for s between 0 and m (43a)
ebm_k
0 fors=m
equivalently:
(i—m+b)s_ (i—m+b)L (i—mm _
e~ b(t=—V)& — e—(i_;b)L fors between 0 and such mthat In [ee—b—m_kk]/(‘ —nm+b) =1L (43b)
0 fors=m

For b=0, form (43a) becomes (31), and the description of retirementage m in (43b) agreeswith note 16.
However, for b>0, the equivalence break down: the boundary condition on m needs e™" > k for L to stay
Real,?* sothe dashed blue line in (42) attainsthe floor price at the largest allowable value of m: —In(k)/b.

Individual rental profiles that correspond to (43a) are:

ei—-mm_

P —b(t-v)
{(l m+ b)e b fors between 0 and m (44a)

0 fors=m
equivalently, for (43b):

(i-m

. ym _
{e‘b(t'v)% for s between 0 and such mthat In [ﬁ]/(i —m+b)=L

0 fors=m

(44b)

i—r)m

2 ’massumingi>mand 1>k > 0 throughout, soe™ ™k in the numeratoris safely positive.

19



Again the floor-price induces a retirement bond; the present value of an individual rental-price profile:

(i-mm_,

fsm e~ (=mW=s) (j_ g4 p)e=bu2 du

eli—mIm_ g—bm

~m-s)(i-n)

...fallsshort of the resale-price profile (43a) by k e , which earns no rent.

We have already worked out how k > 0 gives rise to a faster-than-geometric cohort rental-price
dual to the geometric resale-price profile, before obsolescence. Now for b >0 on top of k> 0, problems
are compounded, for the finite maximalvalue for m nudges even the resale-price profile away from an
exactly geometricform. Interms of retirement ages, a geometric age-price cohort would imply a
density fim) thatis in principle observable and would solve:

GmmHh)s _ Limmm
ebm_j

" —in(k)/b
e s fs @/ e bs om g, f(m) dm (45)

o gbhm_y

...where the upper limit of integrationimposes the restriction that keeps L Real. Equivalently, the
unobservable density of lifespans f({L) would solve:

Zbs e(i —n+b)s (i—m+b)L

— e

e_(5+b)s e
)/(1_7'[+b) 1 — e(i—7I+b)L

f(L)dL (46)

oo
= Jin(e(i—n)s_k

e Dbs_g

...where the lower limit of integration spells out the value of L that obtains for the next individual to

reachretirement. For that retirement age (i.e., s=m), the Jacobian isJ = 6[ln(e:__:::z;")/(i—n+b)]/6m =
((i—r[)/(l—ke_("“)’”) + b/(l—keb’"))/(i—n+b), so flm) =1 f(L). Aninverse Jacobian, explicitly in terms of L, is

not available, though 1/J will serve numerically.

Applying the variational exercise twice to (45), then tidying up, gives the linear differential
equation:

. i—-m+b 1 b -7
flm) + ( k e-(i-mm _gbm ~ 1 _ e—(i—rt+b)m+ eli-m+b)m _

1) fim) = — P (S+imntb)3/k.  (47)

This solves as:

S (s4i T —(i-m+b)x _b ] ] bx_ ,—(i-m)x),~(+b)x
E(6+L—7r+b)mexp[Beta[e  TTnrp © /k (e —e )e dx +C

Exp[Beta[e—(i—mb)m’ b ol/k] (ebm—e—(i-mm)

fim) = (48)

i—m+b’

...where the upper-limit of integration T and the constant C must be set. Choosing T — o and C=0 gives
the tantalizing and proper solution to the wrong problem — i.e., (45), with its upper limit of integration
relaxed from —In(k)/b to 0. Not only does the relaxation make f(L) improper, it implies continuances of
any individual age-price profiles as might have m > —In(k)/b — thatis, red-dotted right tails of any blue
lines that might be drawnto the right of the dashed line in (42) — that do not reach zero, but increase.
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Choosing T = —In(k)/b preserves f(L)'s propriety but causes unavoidable problems of its own, for
now a given C will satisfy (45) exactly at just one age, rather than over the whole interval 0 < s <—In(k)/b.
A compromise takes the C that minimizes the sum of squared differences between the left- and right-
sides of (45) over a fine, evenly-spaced grid of agesfrom 0 to—In(k)/b. (The compromise value depends

on the system parametersd, i-m, b, and k.)**

In the L-domain, the linear differential equation derived from (46) is less attractive:

) ] b e(i—n+b)L_ (i_n.)e(i—rﬁb)s e(i—n)s -k . bs (e(i—n)s _ k)(e(i—n+b)s_ e(i—n+b)L))
fie) + (I_n+b)<b e-m+D)L ¢ (j—m)eli-m+b)s  gli-m+b)L _ 1/k + bt —me (b eli-m+b)L 4 (i_n)e(i—mb)s)‘ fi)
o (bg)s el=—ms _ 2 . . 2
- —e (b (o T (i_m)s) (S+i—te+b) (i—re+b) 8/k (49)

...because s is animplicit inverse function of L (though well behaved). Inthe example plot just below,

given, say, parameter values d =.10, i— 1 =.03, b =.05, and k =.05, the solid-blue implicit function s(L)
rises between dashed-gray limiting cases?> on its way to the dotted asymptote at—In(k)/b:

(=)
T

(=)
T

L=}
T

Solving (49) numerically requires choosing a convenient initial condition ratherthan a constant of
integration, but the same need for an approximating compromise crops up, and itis resolved as before:
pick the initial condition to minimize the sum of squared differences betweenthe left- and right-hand
sides of (46) across a fine, evenly-spaced grid of ages from 0 to (about) —/n(k)/b. By renumbering and
applying a Jacobian transformation — i.e., replace (m, flm)) pairs that approximately solve (45) by

(ln(e(i_n)m"‘)/(i—n+b), flm)/)), or replace (L, f(L)) pairs that nearly solve (46) by (s(L), J f(L)) — one can

e—bm_g

verify that the approximate solutions to (45) and (46) agree to tight tolerances.

** The compromise | eaves f(m) somewhatimproper, integrating to slightly more than 1. Cf. footnote 26, below.
» _which are closed form:for i-m — oo, s(L) = L for L < =In(k)/b but—In(k)/b otherwise; while for i-mt =0,
s(L) = L—In[1 +k(e™ - 1)]/b. For largeL, s(L) closes the gap with —In(k)/bat rate —(i-rt+b).
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For these moderate exemplary parameter values, thereis not much difference betweenthe
densities of retirement ages f(m) (solid red in the following plot) and lifespans f(L) (dashed blue):

p.o4f m L
Means: 14.42 15.70
Std. Devs.: 10.12 11.81

The right-truncation of f{m) is barely discernible at —In(k)/b = 60 years, while the wisps of f(L) continue,
in principle, indefinitely. Both densities meet their geometric resale-price profiles to visual tolerances:?®

Resale Price

Next, suppose the rate of quality improvement / obsolescence doubles, to b =.10, permanently.
The maximal service-life is halved, to—In(k)/b = 30 years: the shape of fim) should change accordingly,
but the shape of f(L) should stay about the same. To implement these considerations, alter o to nearly
satisfy the revised fine, evenly-spaced grid of ages from 0 to almost —/n(k)/b, such that the Kullback-
Leibler discrepancy between the revised density f{(L) and the original solution to (46) is minimized.?’ The

%® For f(m), theintegral conditions work out to 1.0000277, not 1 exactly, atage 0; andto .009957, not.01, atage
In(100)/(8+b) =30.701. Forf(L), the corresponding conditions are 1.00000456 and .009946, respectively. Forboth
densities, departures from the targeted e " run monotonically from “too high” to “too low” as sincreases, so
the red or blue dots in(59) are ever-so-slightly too steep. By age—In(k)/b =60 years, the final retirement occurs,
so a hypothetical dot would hit zero; the geometric approximation would have failed before then.

* In practice, for the new, doubled value of b, | solved (47)/(48) for f(m) repeatedly, once eachfor a sequence of
test-values, carried out the Jacobian transformationto f(L) each time, and computed the K-Ldiscrepancy against

the original f(L) for each candidate-f(L), until reaching a minimum.
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resulting best-choice & =.0896441, implies a clawback of a fifth the changein b. Further, the same

experiment, against a backdrop of a zero floor-price, arrived at a best-choice § =.0908456.2% So a floor-
price marginally worsens the clawback, as premature retirementsactivate the channel of ersatz extra-

discounting. **

For completeness, the best-choice f{m) and f(L), now that b=.10 (and holding k=.05), plot as:

Means:
Std. Devs.:

ooo bl vy by
L L L L

m L
12.86 15.43
7.56 11.09
|l el I IR P e Ln

n Tl e
o u Fait) ) ul

...so premature retirementsare indeed substantial, while the distribution of lifespans is little changed.*°

Again, the integral conditions are met almost exactly:

What about cohort-level rental prices? Absent obsolescence (cf. pp. 17-8), the presence of a

floor price made the cohort-level rental profile fall faster initially than its associated geometric cohort-

% This is easierto carryout, as the problem has a closed form when k=0:

e~dL(1-=(03+.DiL) § 8+.03+1

[ © _8L(1 _ ,—(03+.1)5L)g5+03+.1
Mln5f0 e (1 e )5 2 In

.03+.1 dL

e—.lL(l_e—(.03+.05).1L)‘1-1+-03+-05

.03+.05

» Cf.againthesmalltableon p. 17, whereincreases in k, for b=0, marginally increase 8. This suggests a “sweet
spot,” wherea changeinobsolescence would pass throughto the overall depreciationrate unimpeded. | have

neither lookedfor norfoundit, though.

* Toretirealla cohort's members by age 8 — so the average retirement age approximates the simultaneous quit
ageof3or4suggested by Diewertand Wei — for b=.18611(cf. p. 8 above) requires k=.226. That feels high.
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level resale-price profile. With obsolescence, we have found the approximate density of retirement
agesis truncated. This leads to a cohort-level rental profile that s, if anything, slightly too large at age
s=0,>! then conventionally well behaved over a satisfactorily broad middle range of the cohort’s years in
service, and fully dead atage—In(k)/b. Weight individual-level rental prices in their productive years
(44a) by (48) to find the cohort rental-price:

Go(t) (i—m+8+b +x) Ds) = (50)
© f—ln(k) L elmmm_f (2 (@ri-mth) "V B[ Berale(immtb)x b o] ] ebr— o= (i-mx)e=(3+B)xgy 4 ¢
qo B (i-m e e -m_g-bm Exp[Beta[e‘(i‘""'b)m, l’—'l'}l?'{‘b ) 0]/k](ebm_e—(i—n)m) m

This is decently approximated as a weighted sum of two exponentials:

i —T+8+b+x —5h) 1/b _s\stb
=qolt) g € (1-(k7e)) (51)

...wherex=.699 8 " r > p'® k" andg=—-.157+1.69 5—.292 r—.189 b+ .533 k.32 Unlike the rental-
price profile in (40)/(41), which fell quickly from the geometric standard (i~n+8)e™ toward a lower level,
all while hewing toward the same asymptotic geometric rate of decline -9, profile (50)/(51) compares

well with (i~r+8+b)e )

substantial, positive b, which suggeststhere must be some small b (between 0 and .04) for which

through most of its career, only crashing toward the end. The difference isa

(i—rt+8+b)e_(5+b)S is unobjectionable.®® For computers, b is larger than that, but k is unknown.

The difficulties of fitting the probability density function of retirement ages (48) in the presence
of obsolescence, inflation, and a floor price should be apparent; and the same risks of constructing
Hulten-Wykoff retirement correctives without first imposing sure values on some of the parameters,
would dog this effort even more thanthe previous attempt in the b=0 case (37) — and all for a basic
shape that a right-truncated Gamma density could approximate pretty well.>* | don’t pursue it further.

*' Thatis, too large compared to (r+3§ + b)e ™ sol’veincluded anx for “extra” on the left side of (50), to keep

®(0)=1. The excess is dueto the compromise choice of the constant of integration C for f(m) in equations
(48)/(50), which makes the integral fo_ln(k)/b

*2 The ten coefficients that give structure to x and g are taken from the best fit of a single nonlinear regression of
the rightside of (50)against (51) over the parameter grid:

f(@m)dmcomeoutslightlyabove 1.

o X -1 X b X k X S
{.01,.07, .13, .19, .25, .31, .37} x {.01, .03, .05,.09, .13, .17} x {.04, .08, .12, .16, .2} x {.025, .05, .075, .1, .125, .15} x {s},

...where vectors {s}are each 101 equally-spaced ages from 0 through—In(k)/b, inclusive; so the regression had
127,2600bservations. The functional form of (51) constrains the cohortrental price to go(t)(i—mt+d + b+ x) atage
0 butto O atage—In(k)/b. For the cohort age-efficiency profile, divide through by go(t)(i—mt+ 6 + b + x).

* Cf. footnote 29, above.

** The only problem with the Gamma is unpackingall 4 effects — §, -, b, and k — from just two parameters.
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7. Where Obsolescence “Fits” and the Role of Disaggregate Informationin Geometric Stocks

This essay may be read as a bottom-up response to Diewert and Wei’s “Getting Rental Prices
Right for Computers” (2015), which demonstrated an essential compatibility between standard
geometric accounting of wealthand productive stocks of an asset type, and thoroughly non-geometric
cohorts of the same type, provided a few rateshold roughly constant over a long-enough stretch of
time. The cohorts in question were simultaneously one-hoss shay — every member of a cohort is
scrapped at the same age — an extreme position that both simplifies the math and implies that more
realistic (i.e., less non-geometric) cohort patternswould be subsumable into geometric stocks as well. >

But the cohorts in question were computers, where the primary mode of depreciation is not
breaking (whether simultaneously across individuals or not) but being partly outclassed by the latest
entry, and then further outclassed by the entry after that. This is one description of obsolescence, and
though it is not an encompassing definition of that slippery term, it is the sort that comes quickest to
mind. “Getting Rental Prices Right” cites obsolescence as the reason for quick extinguishment of
service-flows, but beyond that does not wrestle with the phenomenon. (The potential of obsolescence
to overstate the user-cost via jacking up the revaluation termis suggestedin a footnote.)

By operationalizing obsolescence as the reduced price an old individual would fetch once
restored to its original, "as-if-new" condition in a market with other individuals that really are new, and
invoking a Law of One Price across all putatively restored members of anold cohort, we can distinguish
obsolescence (what happens across cohorts) from "net" depreciation (what happens across individuals
within a cohort) even if business owners cannot. The former is plausibly modeled as a geometric
process; the latter probably not, at the individual level. The former may be inferred by hedonic
methods; the latter, for an unavoidable, essentially fixed distribution of service-lives, by scrapyard
statisticians, in simple cases. Both sources of information would usefully supplement standard age-price
regressions.

Characterizing a distribution of service-lives as fixed and unavoidable is sure to raise hackles;
what s really fixed is the joint distribution of management styles, maintenance practices, hard use, and
sloth. Yet age-price studies are conducted only occasionally, and their findings are usually taken as fixed
or very durable, whether by agenciesthat cite such studies' cohort-level results to justify their geometric
stock-level accounting, or by agencies that compare them to their own vintage accounts built up from
never-changing individual-level forms and assumed distributions. Whether at stock, cohort, or
individual levels, the working assumption of fixed distributions is all around us.

This essay's innovation has been to use the assumption of approximately-fixed service-life
distributions to identify the clawbackin net depreciation 8 when newly (and permanently) speeded
obsolescence b raises the effective discount rate. At the possibly geometric cohort level and (thanks to
Diewert and Wei) at the likely geometric stock level, the components of d+b are not easily separated.
Yet an individual-to-cohort examination has shown that o partly offsets b. The specifics of that
examination — one-hoss shay age-efficiency forms among individuals within a cohort, geometric

* The introduction of “Constant Efficiency Profile” cohorts, later intheir paper, drives home the point.
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obsolescence across cohorts, and combined overall geometric depreciation for any cohort — made
inferring the service-life distributions, and holding them almost fixed, tractable. Yet partial clawback

should characterize any aggregation of fixed individual resale-price profiles to a fixed cohort resale-price
profile, provided individual profiles respond to discounting. (Straightline individual forms do not.)

Admitting a positive floor-price to the analysis adds realism, for now faster obsolescence does
hasten retirements (which happen sooner than physical lifespans). It also greatly complicates the math,
and it cleaves cohort age-price price profiles that are geometric or nearly so from cohort age-efficiency
profiles that are not. (Weighted sums of two or more geometric profiles canreliably represent the
latter.) But the basic story still holds: net depreciation partly offsets changes in obsolescence, through
any mechanism that reduces tomorrows, whether ordinary discounting or early retirements.
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