Plant Productivity Dynamics and Private and Public R&D Spillovers: Technological, Geographic and Relational Proximity

Kyoji Fukao
Hitotsubashi University, NISTEP, and RIETI

Rene Belderbos
University of Leuven, UNUMERIT, Maastricht University, and NISTEP

Kenta Ikeuchi
NISTEP

Young Gak Kim
Senshu University and NISTEP

Hyeog Ug Kwon
Nihon University, NISTEP, and RIETI

Paper Abstract: We examine the effects of R&D spillovers on total factor productivity in a large panel of Japanese manufacturing plants matched with R&D survey data (1987-2007). We simultaneously examine the role of public (university and research institutions) and private (firm) R&D spillovers, and examine the differential effects due to technological, geographic and relational (buyer-supplier) proximity. Estimating dynamic long difference models and allowing for gradual convergence in TFP and geographic decay in spillover effects, we find positive effects of technologically proximate private R&D stocks, which decay in distance and become negligible at around 500 kilometres. In addition to knowledge spillovers from technologically proximate R&D stocks, ‘relational’ spillovers from buyer and supplier R&D stocks exert positive effects on TFP growth that are similar in magnitude. The elasticity of TFP is highest for public R&D (corrected for industrial relevance), in particular for plants operated by R&D conducting firms. We do not find evidence of geographic decay in the impact of public and relational spillovers. Over time, declining R&D spillovers appear to be responsible for a substantial part of the decline in the rate of TFP growth. The exit of proximate plants operated by R&D intensive firms plays a notable role in this process and is an important phenomenon in major industrial agglomerations such as Tokyo, Osaka, and Kanagawa.