
Author: Stefan Pahl

Discussant: Dylan Rassier

Presentation Prepared for the IARIW 34th General Conference (Dresden, Germany)
Session 4C: Globalization, Growth and Jobs II
(Tuesday Afternoon, August 23, 2016)
Contributions of the Paper

• Extends the analysis of GVCs to developing countries

• Uses an input-output framework while circumventing actual input-output tables

• Generates a data set of 93 countries and 19 industrial sectors for 1970 – 2008

• Preliminary look at the effects of specializing in production stages on the growth of domestic value-added in exports
Role of Industrialization in Development

• Without Global Fragmentation
 – Industrialization yields competencies that give a country a comparative advantage in manufacturing
 – Export competitiveness results from a comparative advantage in the complete production of final manufactured products

• With Global Fragmentation
 – Industrial competencies can be gained by unbundling stages of production as a result of lower information and communication costs
 – Export competitiveness results from specialization in production stages in which a country has a comparative advantage

• Does specialization necessarily increase domestic value-added in exports?
Input-Output Framework

<table>
<thead>
<tr>
<th></th>
<th>D_{Agr}</th>
<th>D_{Mfg}</th>
<th>D_{Serv}</th>
<th>Final Demand</th>
<th>Exports</th>
<th>Gross Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Agr}</td>
<td></td>
<td></td>
<td></td>
<td>Z_{domestic}</td>
<td>$F_{D_{\text{domestic}}}$</td>
<td>E_{domestic}</td>
</tr>
<tr>
<td>D_{Mfg}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{Serv}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Agr}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Mfg}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Serv}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Z_{domestic}: Domestic intermediate inputs
- $F_{D_{\text{domestic}}}$: Domestic final demand
- E_{domestic}: Domestic exports
- M: Total imports
- X': Gross output
- X: Total output
- FD_{domestic}: Domestic final demand
- FD_{imports}: Imports final demand
Input-Output Framework

• Technical Coefficients
 - $A_{domestic} = Z_{domestic}(\hat{X})^{-1}$
 - $A_{imports} = Z_{imports}(\hat{M})^{-1}$
 - $A_{total} = A_{domestic} + A_{imports}$

• System of Equations
 - Uses of domestic output: $X = A_{domestic}X + FD_{domestic} + E_{domestic}$
 - Uses of imports: $M = A_{imports}M + FD_{imports} + E_{imports}$
 - Gross Output: $X' = X'A_{total} + VA$

• Expressed with Leontief Inverse
 - $X = (I - A_{domestic})^{-1}(FD_{domestic} + E_{domestic})$
 - $M = (I - A_{imports})^{-1}(FD_{imports} + E_{imports})$
Domestic Value-Added in Exports

• Value-Added Per Unit of Gross Output
 – \(V = \bar{V} \hat{A}(\bar{X})^{-1} \)

• Domestic Value-Added in Exports
 – \(DVAX = V(I - A_{domestic})^{-1} E_{domestic} \)
 – Yields the domestic input requirements embodied in exports weighted by the value-added share of gross output

• DVAX Ratio
 – \(DVAXr = \frac{DVAX}{E_{domestic} + E_{imports}} \)
 – Alternative interpretations reflect the channel through which value-added in trade affects the domestic economy
Approximating DVAX

\[\text{DVAX} = \mathbf{V} \left(\mathbf{I} - \mathbf{Z}_{\text{domestic}} (\hat{\mathbf{X}})^{-1} \right)^{-1} \mathbf{E}_{\text{domestic}} \]

\[\mathbf{Z}^{\text{est}}_{\text{domestic}} = \mathbf{Z}^{\text{est}}_{\text{total}} - \mathbf{Z}^{\text{est}}_{\text{imports}} \]

Step 1: Estimate \(\mathbf{Z}_{\text{total}} \)

- \(ii_{\text{total}}^{u} = X' - VA \)
 - Available in actual data
- How to distribute \(ii_{\text{total}}^{u} \) across supplying industries?
 - Proxy coefficient table \(\mathbf{C}_{\text{total}}^{\text{proxy}} \)
 - \(\mathbf{Z}^{\text{est}}_{\text{total}} = \mathbf{C}_{\text{total}}^{\text{proxy}} ii_{\text{total}}^{u} \)
- \(\mathbf{C}_{\text{total}}^{\text{proxy}} \) is based on an average across countries from WIOD
Approximating DVAX

- **Step 2**: Estimate $Z_{imports}$
 - $ii^s_{imports}$ is available from trade data
 - How to distribute $ii^s_{imports}$ across using industries?
 - Proxy coefficient table $R_{proxy\ total}$
 - $Z_{est\ imports} = R_{proxy\ total} \times ii^s_{imports}$
 - $R_{proxy\ total}$ is based on an average across countries from WIOD
 - However...
 - $Z_{est\ imports}$ is not balanced and needs row constraints (i.e., $ii^s_{imports}$) and column constraints (i.e., $ii^u_{imports}$)
 - GRAS is used to balance (Lenzen et al. 2007)
Approximating DVAX

Step 3: Estimate \hat{i}_u^u imports

- Proxy vector F_{proxy} depicts shares of foreign-sourced intermediates in total-sourced intermediates by industry
 - F_{proxy} is based on an average across countries from WIOD
 - There is variation in penetration of imported intermediates across industries but less variation across countries
- Estimate a distribution of imported intermediates by using industry
 - $\hat{D} = \hat{F}_{proxy} \hat{i}_u^{total}$ (latter is known from X' and VA)
- Estimate a distribution of imported intermediates relative to the sum of total intermediates by using industry
 - $\hat{H} = \hat{D} (\hat{i}_u^{sum})^{-1}$ (latter is known from \hat{i}_u^{total})
- Estimate imported intermediates by using industry
 - $\hat{i}_u^{import} = \hat{H} \hat{i}_u^{sum}$ (latter is known from \hat{i}_u^{import})
Source Data

• Gross Output and Value-Added
 – UN Official Country Data
 – UN National Accounts Main Aggregates
 – UNIDO INDSTAT

• Trade Flows
 – UN Comtrade
 – Feenstra et al. (2005)

• Caveats
 – No trade flows in services (may bias DVAXr)
 – Gross output and value-added in basic prices but intermediates in purchase prices (may bias technical coefficients)
 – $C_{proxy \ total}$, $R_{proxy \ total}$, and F_{proxy} are based on a “one-size fits all” approach
 – Results hinge on $C_{proxy \ total}$, $R_{proxy \ total}$, and F_{proxy}
Validation

• WIOD with and without Complete Information
 – One size fits all: average across all WIOD countries in 1995
 – Grouping countries into regions for different years
 – Overall fit reasonably good
 – Grouping countries improves the fit especially at the aggregate level

• Constructed Data Set and WIOD
 – Correlations between 0.88 and 0.93 in agreement with correlations for WIOD, OECD-WTO TiVA, and Johnson and Noguera (2014)
 – Differences explained by sectoral detail and lack of trade in services

• Constructed Data Set and Johnson and Noguera (2014)
 – Reflects long-term trends
 – Differences arise because of conceptual differences between DVAX and VAX and because of end year differences (2008 v. 2009)
Does DVAXr Explain Growth in DVAX?

\[\Delta \ln(DVAX)_{j,t} = \alpha_0 + \beta \ln(DVAXr)_{j,t-k} + \gamma X + \eta_j + v_t + \varepsilon_{j,t} \]

- Lagged values reduce endogeneity
- Fixed effects control for unobserved heterogeneity

Preliminary Results
- \(\beta \) is negative and statistically significant in all but one specification
- DVAX grows faster when the initial domestic contribution to exports is lower

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \ln(DVAX))</td>
<td>-0.0342</td>
<td>-0.0693***</td>
<td>-0.0443**</td>
<td>-0.0931**</td>
<td>-0.148***</td>
<td>-0.0961**</td>
</tr>
<tr>
<td>N</td>
<td>2,902</td>
<td>2,902</td>
<td>2,902</td>
<td>2,902</td>
<td>2,902</td>
<td>2,902</td>
</tr>
<tr>
<td>R²</td>
<td>0.001</td>
<td>0.010</td>
<td>0.065</td>
<td>0.035</td>
<td>0.100</td>
<td>0.132</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conclusions

• Methodology widely applicable to study production fragmentation across time and countries
 – Good fit and systematic improvements possible

• Data set contains 93 countries and 19 industrial sectors from 1970 to 2008
 – To be extended by at least 10 countries from 1963 to 2015

• First results indicate a negative correlation between the initial DVAXr levels and subsequent growth of DVAX
 – To be extended to explore time periods and groups of countries
Discussion

• How accurate are the proxies (i.e., C, R, and F)?
 – Two Assumptions
 • Share of intermediates sourced by an industry can be approximated by a given set of countries
 • Foreign penetration of industries holds across a given set of countries
 – C and R yield the same technology assumptions across countries
 – F yields equal shares of foreign-sourced intermediates across countries
 – Bullón et al. (2014) warn against overarching assumptions for developing countries

• How effective is WIOD for validation given its use for proxies?
 – Why would we expect anything other than high correlations in tables 1 and 2?
 – Tables 3 and 4 demonstrate differences
 – Countries in WIOD not in Pahl (2016) data set?
Discussion

• Are UN Comtrade data designed for international comparison?
 – Conversion to a single currency?
 – Variation in price levels (i.e., purchasing power)?
 – May be relevant for DVAX but not DVAXr?

• Plans for an IV approach?
 – DVAXr is composed of DVAX
 – Are lags consistent with the related literature?
 • Common substitute in other applications
 • Kummritz (2016) and Boffa et al. (2016) do not use lags?

• Comprehensive interpretation of the sign on DVAXr in the context of the conceptual framework?
 – Estimation strategy discusses possibility of a positive sign
 – Results discuss the actual negative sign