Development of a Quality Adjusted Labour Productivity Index in the European Union – Example of the Employment Embodied in European Exports

Authors: Antonio F Amores (European Commission, JRC-IPTS) and Isabelle Rémond-Tiedrez (European Commission, Eurostat)

Discussant: Stefan Pahl (University of Groningen, the Netherlands)
Background

- Production fragmentation: division of labor at the level of production stages (Baldwin, 2006)
 - Countries do not perform all production stages needed to produce a final good
 - Only considering industry and number of jobs not very sensible
 - Type of job matters (activity and what does it pay)

- Empirical challenge: data not routinely collected & what should be measured?
 - Industries (Lall, 2008)
 - Occupations (Mann, 2005)
 - Business functions (Sturgeon and Gereffi, 2009)
 - Tasks (Autor et al., 2015)
 - Skills (Hijzen et al., 2005; Foster-McGregor et al., 2013)
What is this paper about?

› Collect and harmonize data on employment by skill level and age groups as a proxy for quality

› Combine with Eurostat SUIOTs to calculate employment embodied in exports

› Construct and apply index of labor inputs adjusted for skill and age groups (quality)
Data sources

- Benchmarked by national account data
 - Total hours worked by industry & total compensation
- Labour Force Surveys (LFS)
 - Age, skill and industry structure of hours worked
 - Annual data 2002-2014
- Structural Earnings Survey (SES)
 - Age, skill and industry structure of labor compensation
- Statistics on Income and Living Conditions (SILC)
 - Age and skill structure of labor compensation in agriculture

- Goal: 2002–2014, 3 age groups, 3 skill types, 28 member states with 10 industries (21 for subset of countries)
Data sources

› Eurostat SUIOTs
 • Consolidated tables of national agencies
 • In ESA2010 (SNA2008) for 2010-2013
 • Projected back to 2005 and forward to 2014

› Employment in exports
 • Use Leontief inverse to obtain employment embodied in exports
Methodology: Employment embodied in exports

- Stylized national input-output table (industry x industry)

<table>
<thead>
<tr>
<th></th>
<th>D_{Agr}</th>
<th>D_{Mfg}</th>
<th>D_{Serv}</th>
<th>FD</th>
<th>EXP</th>
<th>GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Agr}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{Mfg}</td>
<td></td>
<td></td>
<td>Z_{dom}</td>
<td>$f_{d_{dom}}$</td>
<td>e</td>
<td>x</td>
</tr>
<tr>
<td>D_{Serv}</td>
<td></td>
<td>Z_{imp}</td>
<td>$f_{d_{imp}}$</td>
<td>e_{imp}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Agr}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>M_{Mfg}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Serv}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x'</td>
</tr>
<tr>
<td>GO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$EmpEX = b \left(I - Z_{dom} (\hat{x})^{-1} \right)^{-1} e = b \cdot L \cdot e$

- see: Leontief (1936), Chenerey et al. (1986), Hummels et al. (2001)...

- b: labor requirements per unit of output by industry
 - Needed data: hours worked by skill level/age group by industry
Employment embodied in exports

Figure 8: Embodied employment in exports for the EU28 (in thousands of hours worked) and its composition by skill level workers

- Stylized findings:
 - 50% medium-skilled workers, high-skilled share increased
 - Differences across industries
 - Age is not yet incorporated
Methodology: Quality Adjusted Labour Index (QALI)

- Goal: coherent set of competitiveness indicators

- Labor input index (Labor services index)
 - Based on Jorgenson et al. (1987); EUKLEMS (O’Mahony and Timmer, 2009)
 - Different groups of labor differently productive
 - Adjust labor inputs for groups

- \[QALI_{i,T}^t = \sum_i \left(\frac{w_{i,t} + w_{i,t-1}}{2} \right) \ln \left(\frac{h_{i,t}}{h_{i,t-1}} \right) \times 100 \]
 - h: hours worked, w: labor income shares, i: groups
 - Skill and age proxy for quality
 - Aggregation takes into account the composition of the labor force

- Growth of adjusted index > growth of unadjusted hours worked -> labor shifted to higher remunerated groups

- Time series: 2002-2014

- Running project: capital productivity indicators
QALI of European Union

- Summing up:
 - Data collection on labor
 - Combination with Eurostat IO tables
 - Quality Adjusted Labor Index
Discussion

How does the new data compare to existing sources? What can be learned from these?

World Input-Output Database and Socio-Economic Accounts (WIOD; Timmer et al., 2015)
- 1995-2011, 27 EU member states
- Same data sources for European countries (LFS, SES, SILC)
- Same skill classification (ISCED97, 3 categories)
- Strong point: age and recent years
- Weak point: national IO tables vs. world tables in WIOD
Discussion

› EUKLEMS (O’Mahony and Timmer, 2009)
 ✔ Relatively detailed account of data on employment
 ✔ Includes a similar labor services index
 - Additionally covers gender

› How does it compare to/improve upon this labor services index?
 ✔ Are there methods that can be applied to increase coverage?
 ✔ Are there additional data sources that can be exploited?

› What are the priorities in data construction?
 ✔ E.g.: “non-publishable information due to representativeness of the different categories” of gender and status
Discussion

› How can the data be extended to link closer to the type of job?
› Extent data construction beyond existing metrics (age, skill, gender)
 › E.g., occupational data available in LFS and SES
› Other Eurostat resources to extend on the type of job?
Discussion

› How can the data be extended to link closer to the type of job?
› Extent data construction beyond existing metrics (age, skill, gender)
 › E.g., occupational data available in LFS and SES
› Other Eurostat resources to extend on the type of job?

Thank you for your attention