INCOME DISTRIBUTION, HOUSEHOLD HETEROGENEITY AND CONSUMPTION INSURANCE IN THE UK:
A MIXTURE MODEL APPROACH

Gabriele Amorosi1, Amanda Gosling2
and Miguel Leon-Ledesma2

1University of Hull, 2University of Kent.
Aim of the paper

• Assess the extent to which shocks to income appear to result in shocks to consumption
• Increase in income inequality: greater heterogeneity or more uncertainty?
• Is there evidence that ability to smooth income has increased over time?
• Using FES data
Key identification strategy

• Problem of identification: how to properly model household heterogeneity (e.g. different types of households);
 – One type: any data will reject smoothing
 – Infinite number of possible types: no data can reject smoothing
 – We assume **finite** number of types

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
Analytical approach

• Income distribution is not unimodal (show graphs)
 – We identify the different types by fitting a mixture of normals to this distribution
 – Permanent income differs between but not within type
 – Test is essentially to see whether variance of income within each type is associated with variation in consumption
Kernel density estimate of income and consumption over time (1)
Kernel density estimate of income and consumption over time (2)

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
Income generating process

\[y_{it1} = p_{1t} + m_{1t} + \varepsilon_{it1} \]

\[y_{it2} = p_{2t} + m_{2t} + \varepsilon_{it2} \]

\[y_{it3} = p_{3t} + m_{3t} + \varepsilon_{it3} \]
Consumption model

Consumption of group j (assuming away macro shocks)

\[c_{itj} = p_{jt} + \eta_{itj} \]

No insurance \(cor(\varepsilon, \eta) = 1 \)

Full insurance \(cor(\varepsilon, \eta) = 0 \)

Aim is to compare the fit of these two extreme models (eyeball at present, later work will develop more formal test)
Methodology

• Estimate the distribution of household income as a mixture of normals
• Take the parameters of each normal distribution and use them to predict:
 – the distribution of consumption
 – the relationship between income and consumption
Mixture models

- Mixture models useful to describe complex distributions;
- π = subgroup proportions, with $\sum \pi = 1$;
- θ = distribution parameters (e.g. mean and s.d.);
- To be estimated via ML;

\[
f(x) = \sum_{j=1}^{n} \pi_j g(x; \theta_j)
\]
Empirical estimation procedure

- Parameters are given by the following likelihood function for mixtures of normals:

\[
L(\mu, \sigma^2, \pi) = \prod_{i=1}^{n} \left\{ \sum_{j=1}^{c} \pi_j \left[\frac{1}{\sqrt{2\sigma_j}} \times \exp \left(-\frac{1}{2} \left(\frac{(x_i - \mu_j)^2}{\sigma_j^2} \right) \right) \right] \right\}
\]
Some computational issues (1)

• In models like this the Likelihood function is not well behaved
 – In samples very different models can give very similar fit to the data
 – Different starting values can give slightly different parameters
 – The number of groups can not be directly estimated
Some computational issues (2)

• Thus we impose
 – The number of groups to be the same in each year
 • 3 groups found to be the maximum that could be estimated
 – That the proportion in each group does not experience wide year on year variation but may (and does) change gradually over time
 – That the relative ranking in income of each group does not change
 • Groups are best understood as skill groups

• These restrictions are imposed by taking the best fit unrestricted estimates of each years proportions, smoothing them using a MA(5) process and then re-estimating the means and the variances using these restricted proportions
Trends in smoothed proportions of each income groups π
Trends in smoothed proportions of each income groups π

Polarization (??)

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
Trends in mean income over time

Low income group (restricted)
Middle income group (restricted)
High income group (restricted)
Income density 1996

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
Predicted distribution of consumption

Consumption with perfect smoothing

\[f(c_i) = \pi_1 \frac{\phi}{\sigma_{\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{\varepsilon}^C} \right) + \pi_2 \frac{\phi}{\sigma_{\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{\varepsilon}^C} \right) + \left(1 - \pi_1 - \pi_2 \right) \frac{\phi}{\sigma_{\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{\varepsilon}^C} \right) \]

\[\sigma_{\varepsilon}^C = \sqrt{\text{var}(c) - \text{var}(y_P)} \]

Consumption with no smoothing

\[f(c_i) = \pi_1 \frac{\phi}{\sigma_{1\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{1\varepsilon}^C} \right) + \pi_2 \frac{\phi}{\sigma_{2\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{2\varepsilon}^C} \right) + \left(1 - \pi_1 - \pi_2 \right) \frac{\phi}{\sigma_{3\varepsilon}^C} \left(\frac{c_i - \overline{y}_P}{\sigma_{3\varepsilon}^C} \right) \]

\[\sigma_{j\varepsilon}^C = \sqrt{\text{var}(y|j) + \text{var}(c) - \text{var}(y)} \]
Comparing consumption (1)

1968

Kernel density estimate
Assuming no smoothing
With smoothing
Comparing consumption (2)

Kernel density estimate
No smoothing
With smoothing/insurance
1999

Comparing consumption (2)
Joint distribution of consumption and income with smoothing

\[E(c \mid y) = p_1 \Pr(G = 1 \mid y) + p_2 \Pr(G = 2 \mid y) + p_3 \Pr(G = 3 \mid y) \]

where

\[\Pr(G = 1 \mid y) = \frac{\Pr(Y = y \mid G = 1)\pi_1}{\Pr(Y = y)} \] using Bayes
Joint distribution of consumption and income with no smoothing

\[E(c \mid y) = y + E(c) - E(y) \]
1970

Predicted consumption (log)

Income (log)

- 45 degree line (no smoothing or insurance)
- Predicted from model
- Kernel density estimate

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
1999

Predicted consumption (log) vs. Income (log)

- 45 degree line (no smoothing or insurance)
- Predicted from model
- Kernel density estimate

34th IARIW General Conference, Dresden, Germany, August 21-27, 2016
Concluding remarks

• Mixture model seems to fit income density reasonably well
• Eyeballs of data reject both extreme models
• Evidence of both growing risk and of the ability of markets to insure agents against this
• Model gives a good intuition as to why consumption should fall with income at lower ranges
 – Some of those currently poor may have high expected life incomes
• Likely that more types will be needed to fit the relationship between income and consumption at higher levels to some extent