Estimating Capital Services in the U.S.: An Empirical Assessment of Implementation Differences

JON D. SAMUELS (BEA), JAY STEWART (BLS), ERICH H. STRASSNER (BEA) AND DAVID B. WASSHAUSEN (BEA)

Paper prepared for the IARIW 34th General Conference
Dresden, Germany, August 21 – 27, 2016

Presented by Erich Oltmanns

© Federal Statistical Office of Germany, National Accounts, Labour Market, Prices
The framework

Theory of capital services

- Link between assets used in production and value added
- Focus on production and productivity

Guidelines

- System of National Accounts 2008, Chapter 20

Calculated by

- Some statistical offices
- In the context of research projects
Aim of the study

Empirical comparison of different measures of capital services

- BLS methodology (for integrated production accounts)
- Jorgenson, Ho, and Stiroh (2005), consistent with the BEA accounts

Age-efficiency function as a major conceptual difference

Implementation issues
Structure of the paper

General outline of method

Explaining the compared methods
 - BLS Methodology
 - Approach of Jorgenson, Ho, and Stiroh (2005)

Comparison

Data and implementation issues

Results
Measuring capital services

Calculation of productive capital stock

- using the PIM
- Age-efficiency function

Calculation of rental prices

- for each industry x asset cell
- representing the implicit rental cost of using the asset in production

Aggregation
Comparison

Methods
Numerical modelling
Empirical results
Age-efficiency profile

BLS Methodology

Hyperbolic function

\[\lambda(\alpha, \Omega) \begin{cases} \frac{\Omega - \alpha}{\Omega - \beta \alpha} & \alpha < \Omega \\ 0 & \text{otherwise} \end{cases} \]

Very flexible form

Assumptions for \(\beta \)

Jorgenson/Ho/Stiroh (2005)

Geometric function

\[K_t = \sum_{\tau=0}^{\infty} (1 - \delta)^\tau I_{t-1} \]
\[= K_{t-1} (1 - \delta) + I_t \]
Figure A: Age-Efficiency Profiles

© Federal Statistical Office of Germany, National Accounts, Labour Market, Prices
Figure B: Age-Efficiency/Price Functions

- Age-Efficiency L-bar = 11
- Age-Price L-bar = 11
- Geometric Age-Efficiency/Price
Data and implementation

BEA’s fixed investment statistics in both approaches

Differences for

- Equipment
- Structures
- Intellectual property products

Others

- Wealth stock
- Capital Income
- Rates of return
- Capital Service Prices
Table 1: Growth in Aggregate Value-Added and the Sources of Growth
Direct Aggregation across Industries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions BLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td>1.94</td>
<td>2.71</td>
<td>0.56</td>
<td>-1.69</td>
<td>2.06</td>
</tr>
<tr>
<td>Capital Input</td>
<td>1.13</td>
<td>1.51</td>
<td>0.44</td>
<td>0.60</td>
<td>0.34</td>
</tr>
<tr>
<td>Labor Input</td>
<td>0.38</td>
<td>0.63</td>
<td>-0.09</td>
<td>-1.38</td>
<td>0.77</td>
</tr>
<tr>
<td>College Labor</td>
<td>0.55</td>
<td>0.66</td>
<td>0.35</td>
<td>-0.11</td>
<td>0.66</td>
</tr>
<tr>
<td>Non-college Labor</td>
<td>-0.17</td>
<td>-0.02</td>
<td>-0.44</td>
<td>-1.27</td>
<td>0.11</td>
</tr>
<tr>
<td>MFP</td>
<td>0.44</td>
<td>0.56</td>
<td>0.21</td>
<td>-0.91</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions JHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td>1.94</td>
<td>2.71</td>
<td>0.56</td>
<td>-1.69</td>
<td>2.06</td>
</tr>
<tr>
<td>Capital Input</td>
<td>1.11</td>
<td>1.48</td>
<td>0.45</td>
<td>0.70</td>
<td>0.29</td>
</tr>
<tr>
<td>Labor Input</td>
<td>0.38</td>
<td>0.63</td>
<td>-0.09</td>
<td>-1.38</td>
<td>0.77</td>
</tr>
<tr>
<td>College Labor</td>
<td>0.55</td>
<td>0.66</td>
<td>0.35</td>
<td>-0.11</td>
<td>0.66</td>
</tr>
<tr>
<td>Non-college Labor</td>
<td>-0.17</td>
<td>-0.02</td>
<td>-0.44</td>
<td>-1.27</td>
<td>0.11</td>
</tr>
<tr>
<td>MFP</td>
<td>0.45</td>
<td>0.59</td>
<td>0.20</td>
<td>-1.01</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Notes: Average annual percentages. Aggregate value added growth is the aggregate of share weighed industry value added growth. The contribution is the domar-weighted industry contributions.
Figure 1: Capital Input Growth Rates 1998-2012: JHS versus BLS
Results

Generated growth rates are very similar

Differences in some industries

- Due to differences in the estimates of capital composition
- And due to implementation choices)
Comments/question to the authors

Structure of the paper ok
Explanation for similar growth rates?
BEA DJA BLS JHS?
Thanks for your attention!

Erich Oltmanns
Telephone: +49 611 752087
erich.oltmanns@destatis.de
www.destatis.de

© Federal Statistical Office of Germany, National Accounts, Labour Market, Prices